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Abstract

Today, most end-user devices are strongly personal. Laptops, mobile phones,
and PDAs are rarely used by more than one individual. At the same time,
a typical user is required to hold and use a plethora of virtual credentials
to identify himself to networks and services. These passwords and keys are
mostly stored on the user’s device. This has lead to the paradigm shift from
an user-centric security model to a vastly simplified process-centric one. In
absence of multiple users on the device, processes rather than users will take
a central role in defining the achievable security level. The work in this
thesis concentrates on the application-binding aspects between device security
hardware and applications running on top of the device’s operating system.
The hardware and software basis that is critical for the security of the
system is denoted as the Trusted Computing Base (TCB). However, the size
and complexity of the TCB in contemporary mainstream operating systems
provides malware with a big attack surface to compromise system security
and to gain illegitimate access to credentials.
The Flicker architecture by Jonathan McCune et.al. of CMU provides the
means to securely execute a small piece of security sensitive software (PAL)
in an isolated execution environment with a minimal, secure TCB. Thereby,
Flicker makes use of the TCG DRTM technology, available in contemporary
PC chipsets. However, the link between an application, that leverages Flicker,
and its PAL is missing. This raises the security issue that deployed credentials
can be easily misused by other software on the system, such as malware.
This thesis presents a Flicker based architecture, that establishes this missing
link by providing a framework in which each application is bound to a software-
based Mobile Trusted Module (MTM), effectively building a system with
application-specific secure credentials. The viability of the architecture is
confirmed by presenting a prototype implementation together with a related
attacker model and security analysis.
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1

Introduction

1.1 Motivation

Users are today required to identify themselves to a plethora of Internet and
net-based services, such as online banking, email accounts, or e-governmental
institutions. For that purpose, they are required to manage and apply a
number of different “virtual” credentials – in the most cases passwords,
but also cryptographic keys and certificates are possible. In general, these
credentials are defined as cryptographic objects and related data that are
used to establish the identity of a party and secure communications over the
Internet [45].
Usually, these virtual credentials are used and stored on the commodity PC
platforms of the users. For example, cryptographic keys have to be stored
on some kind of persistent storage, normally the PC’s hard disk, passwords
be entered via a user interface, or cryptographic operations, like decryption,
must be performed. The hardware and software basis that is critical for the
security of the system and that has inevitably to be secure in order to enable
the secure application and storage of credentials is denoted as the Trusted
Computing Base (TCB). However, the size and complexity of modern system-
and application-level software entails an ill-defined TCB that comprises the
bulk of the operating system. It further provides an attacker or malware with
a big attack surface to compromise the system integrity and confidentiality,
rendering the secure credential storage and usage basically infeasible.
Industry and research have introduced a number of solutions to counter
this problem and to facilitate a more secure computing. One example are
hyervisor or microkernel based architectures that implement a small TCB by
compartmentalisation of the software. Another example are the specifications
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1.1. MOTIVATION

of the Trusted Computing Group (TCG), which have been widely adopted
today, e.g., the cornerstone of TCG trusted computing, the Trusted Platform
Module (TPM), is deployed on almost every new business or server class
platform. One of the newer concepts of TCG, that has been realised in
cooperation with the major chip vendors, is Dynamic Root of Trust for
Measurement (DRTM), also known as “late-launch”. DRTM provides the
possibilities to establish a hardware protected and extremely isolated execution
environment in order to bootstrap a secure OS with a minimal TCB. In
conjunction with a TPM it also provides the means for secure storage and
the remote attestation of the execution environment.
The Flicker research project of the Carnegie Mellon University (CMU) lever-
ages DRTM to establish such an isolated environment, in which applications
can execute sensible computations with protection from software-based and
even simpler hardware-based attacks. The Flicker concept thus offers a suit-
able approach to provide applications with the possibility to securely use
and store credentials in isolation from all other application- and system-level
software on their platform. However, the binding between the execution
environment and the applications is missing, raising security issues like the
misuse of deployed credentials by other applications, including malware.
In this thesis we propose an architecture, based on the Flicker infrastructure,
that provides this link and enables the application-specific storage and usage
of credentials by means of a software-based Mobile Trusted Module (MTM)
as credential platform.
The motivation to focus on an application-specific binding of the execution
environment instead of an user-specific is the increasing personalisation of
computing platforms. While it is common for a long time in the mobile
devices sector, e.g., mobile phones, that people own their personal device
instead of sharing one with other people, this also becomes more and more
the standard in the non-mobile sector. Under this assumption, credentials on
a particular platform are used by only one user and are usually intended for
usage by only one specific application. A possible scenario would be an online
banking application that establishes an authenticated and secure channel
to the banking server. It therefore requires an isolated, secure execution
environment for its cryptographic operations and further the means to store
its credentials securely during passive periods. A two-factor authentication,
that enables multi-user scenarios through user-specific authentication remains
a possible add-on to an application-specific architecture.
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CHAPTER 1. INTRODUCTION

1.2 Thesis Structure

This thesis is structured as follows. In Chapter 2 Technical Background
and Problem Statement, we elaborate on the Flicker infrastructure and the
necessary technical details in order to understand the security benefits that
Flicker provides for our architecture. Based on this elaboration, we state in
more detail the problem addressed in this thesis. Afterwards, we compare
in Chapter 3 Related Work different solutions to the stated problem, based
on selected criteria. Further, we show alternatives to certain parts of the
proposed architecture and justify our design decisions. The architecture is
explicitly presented in Chapter 4 Architecture. We then analyse it for its
security properties in Chapter 5 Security Analysis and base the analysis on an
attacker model and different attack scenarios. In Chapter 6 Implementation,
we present numbers and figures about the actual implementation and discuss
in Chapter 7 Future Work further improvements and open research questions.
We conclude the thesis in Chapter 8 Conclusion.
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2

Technical Background and Prob-
lem Statement

In this chapter, we present important technical background information for
the understanding of the later presented architecture and its analysis. The
main focus lies on the Flicker infrastructure (Section 2.4), which is an essential
component of the architecture in this thesis. Flicker, on the other hand, is
built on top of Trusted Computing Group DRTM and Trusted Platform
Module (TPM), which both play an essential role and whose relevant parts
are explained separately (Sections 2.1 and 2.3). Further, the Mobile Trusted
Module (MTM) requires some explanation, since it is used as the credential
platform in our architecture (Section 2.2).

2.1 Trusted Platform Module

The Trusted Platform Module (TPM) is an opt-in hardware device, usually
mounted on the motherboard and connected to the system via the Low Pin
Count (LPC) bus, thus available before any other initialised device during
the bootstrap.
The TPM is specified by the Trusted Computing Group (TCG) (currently in
version 1.2 [117]) in order to implement security design goals [26, chap. 1] such
as the secure reporting of the environment, the provision of secure storage,
or the attestation of the platform status to remote parties. For that reason,
the TPM is equipped with a number of essential components. To name the
major components: a) an execution engine for the specified commands; b) a
True Random Number Generator (TRNG); c) Non-Volatile Memory (NVM);

5



2.1. TRUSTED PLATFORM MODULE

d) a cryptographic co-processor; e) Platform Configuration Registers (PCRs);
and f) a small number of monotonic counters.
Applications can access the TPM in an easy and direct fashion by means
of the TCG Software Stack (TSS) [116], which also provides more advanced
features like the access to an TPM on a remote machine or the persistent
storage of key objects on disk.
An TPM is a complex device and in this thesis the focus is limited to the
thesis relevant details. Of special importance for the understanding of our
presented architecture are the details of the sealed storage and the platform
state attestation.

2.1.1 Platform State Recording

The TPM implements the means to securely store and attest the state of the
platform.
The state is maintained in the abstract form of aggregated measurements
inside the TPM’s PCRs. This abstraction is necessary, since keeping a
full record of the platform’s operating system and applications’ versions –
or similar logging mechanisms – would surely exceed the TPM’s storage
capabilities.
A Platform Configuration Register is an 160-bit shielded storage location
inside the TPM, of which an TPM in version 1.2 contains exactly 24. The
particular integrity metrics that form the platform state are measured as
cryptographic hashes. A very important fact here is that a PCR can not
be simply overwritten with a new value, but only be extended with a new
measurement. The new value of the extended PCR is computed as follows:

PCRNEWi = H(PCROLDi || value to add)

where H is a cryptographically secure hash function with a block size of
160-bits, e.g., SHA-1 for TPMs in version 1.2, and || denotes concatenation.
One important consequence of this extension mechanism is that each PCR
can hold an unlimited number of measurements and that the order of the
extensions will affect the aggregate value.
Before the v1.2 specification, PCRs could only be reset to zero at system
reboot time. But with the v1.2 specification the TCG introduced the concept
of dynamic PCRs. In particular, the lower 16 PCRs are considered static,
i.e., reset still only at system reboot, while the higher 8 PCRs are dynamic,

6



CHAPTER 2. TECHNICAL BACKGROUND AND PROBLEM
STATEMENT

Locality Usage

PCRs that can be
Reset by the Local-
ity in addition to
“Any”

PCRs that can be
Extended by this Lo-
cality in addition to
“Any”

Any — 16,23 0-16,23

0

The legacy envi-
ronment for the
Static RTM and
its chain of trust

— —

1

An environment
for use by the
Trusted Operat-
ing System

— 20

2

The “runtime”
environment
for the Trusted
Operating System

20,21,22 17-22*

3

Auxiliary compo-
nents. Use of this
is optional and, if
used, it is imple-
mentation depen-
dent

— 17-20*

4
Trusted Hardware.
This is the Dy-
namic RTM

17-20 17,18*

Table 2.1: TPM localities (Table adapted from [115, p. 8] and [114, p. 30]);
*the TPM ensures after a reset of PCR17, that PCR17 is extended at least
once by locality 4 before the localities 2 and 3 are allowed to extend this register

meaning that they can be reset under certain circumstances without a system
reboot. To distinguish between a reset at reboot time and a dynamic reset,
the former one sets the dynamic PCRs to the value −1, while the latter
one sets them to zero. The right to reset dynamic PCRs depends on the
locality (i.e., privilege level, with 4 being the highest and 0 the lowest) at
which the reset command is issued. Table 2.1 lists the defined localities, their
usage, and which PCR reset and extension capabilities each locality possesses.
Table 2.2 summarises the specified type and usage for all PCRs. The usage,
localities, and reset/extension capabilities are tuned such that they fulfil
the requirement that each locality has only the least required privileges for
reset/extension.
The PCR17 has a special role. It can only can be dynamically reset by a
special LPC bus cycle, which is only given when the CPU issues a late-launch

7



2.1. TRUSTED PLATFORM MODULE

PCR Type PCR Index PCR Usage

Static

0 CRTM, BIOS, and Host Platform Extensions
1 Host Platform Configuration
2 Option ROM Code
3 Option ROM Configuration and Data
4 IPL Code (usually the MBR)

5 IPL Code Configuration and Data (for use by
the IPL Code)

6 State Transition and Wake Events
7 Host Platform Manufacturer Control

8-15 Defined for use by the Static Operating Sys-
tem. Host Platform

Dynamic

16 Debugging
17 DRTM
18 Auxiliary components
19 Trusted Operating System
20-22 Used by the Trusted Operating System
23 Not used

Table 2.2: PCR usage (Table adapted from [114, p. 33, p. 41])

command. This bus cycle can not be emulated by software. Consequently,
although software can still extend and read the PCR17, it can not reset it,
only the CPU is capable of doing so.
The PCR extension functionality can be used in different ways to record
the state of the platform. For example, one of the goals of the TCG is to
establish trust into the booted operating system. The TrustedGRUB [9]
implements this authenticated boot based on a Static Root of Trust for
Measurement (SRTM), anchored at an immutable part of the BIOS, called
the Core Root of Trust for Measurement (CRTM), and recursively applied
measurements of the next piece of software to be executed during bootstrap.
Thus, after the boot process completes, the PCR values represent the recorded
boot sequence and can be used to verify that the loaded OS is trusted at this
point in time. For instance, PCRs 8 and 9 contain the measurement of the
bootloader stage 2 and PCR14 contains the measurement of the files that
were actually loaded (e.g., kernel, initrd, modules, etc.). It has to be noted
that, in contrast to a secure boot, the goal is not to abort the boot process
when a part of the boot could not be verified, but to measure the boot process
and to be able to attest this measurement to a remote party, which at a later
time evaluates based on the measurements the trustworthiness of the booted
system.
In order to meet the trust requirements, the authenticated boot measurement
chain must meet the following three conditions:

8



CHAPTER 2. TECHNICAL BACKGROUND AND PROBLEM
STATEMENT

1. The CRTM must be the first code running on the system and it can
not be modified

2. The PCR values can no be reset, except at boot time before the CRTM
executes

3. The measurement chain is contiguous, all software executing was mea-
sured before its execution, and the measured code is not modified
between measurement and execution

Another example for recording the platform state is the Integrity Measure-
ment Architecture (IMA) by IBM Research [95], which extends the trust
measurements of an authenticated boot by also including the dynamic exe-
cutable content in the application layer. In a system that implements IMA,
all executable content loaded, e.g., executables, scripts, or dynamically loaded
libraries, is measured and the measurement is stored in an ordered event log
inside the kernel. The event log’s integrity can be verified based on the TPM,
because the IMA also extends a certain PCR – usually PCR10 – with the
measurement when storing it in the log. This way, the exact platform state
can be reported by means of the event log and the attested IMA PCR. A
verifying party can calculate the alleged value of the IMA PCR from the
event log, and if the computed value and the attested PCR value correspond
to each other, the verifying party validated the integrity of the log and knows
the exact platform state based on it.

2.1.2 Platform State Attestation

The TPM is able to attest – or quote – the platform status, based on the
PCRs, to an external entity. Such an attestation is in its essence just a
digital signature of the composite of one or several selected PCR values, with
some additional information about the selected registers and information to
guarantee the freshness of the attestation.
The key used for the attestation is called Attestation Identity Key (AIK). It
is a TPM-generated 2048-bit RSA key, whose private portion never leaves
the TPM in unencrypted form. A Privacy Certificate Authority (CA) is used
to certify that the AIK was generated by and belongs to a legitimate TPM.
Thus, another external verifier can validate the AIK’s certificate, based on its
trust in the issuing CA, before verifying any attestation of a TPM. Further,
for verified attestations, the verifier can also decide based on the reported
platform state if and how much trust he puts in the platform corresponding to

9



2.1. TRUSTED PLATFORM MODULE

the reporting TPM. One use case for remote attestation, that was explained
earlier, is IMA. In this case, the TPM quotes the IMA PCR and thus enables
an external party to retrieve and verify a detailed description of the platform
state, i.e., the loaded software, and thus to evaluate its trust into the reported
system.
It is important to notice that an AIK can only be used to quote, i.e., sign,
TPM internal data like PCR values, but never externally supplied data.
In order to sign external data with a TPM, a different key type than an
attestation key is required. This distinction is essential to guarantee that
data signed by an AIK originated indeed from inside the TPM of the AIK,
e.g., the attested platform state is indeed the state recorded by the TPM and
not a counterfeited one, simply signed with the AIK.

2.1.3 Sealed Storage

Another important property of TPM is the capability to provide sealed
storage. A TPM contains a special key, Storage Root Key (SRK), whose
private portion, similarly to the AIK, never leaves the TPM in plaintext. By
specification the SRK is also a 2048-bit RSA key. The purpose of storage
keys is to seal other data or sensible information like an AES key.
The sealing operation is essentially an encryption function, but it attaches
further integrity-protected information to the encrypted data.
The foremost feature is that the unsealing of the blob can be bound to a
specific platform configuration, meaning specific values of selected PCRs.
With this feature, the sealed data will only be revealed in a given platform
state.
Moreover, the sealed data contains also a) information about the platform
configuration at seal creation time; b) a TPM specific value to guarantee that
only the TPM who sealed the data is able to unseal it; and c) authentication
data, such as a password, required to unseal the data.
The TPM does not inherently support chaining mechanisms for asymmetric
encryption functions, thus prohibiting the sealing of larger amounts of data.
So it is common practise to first encrypt the data that shall be sealed with
a symmetric algorithm and then to seal the symmetric key with the TPM.
Consequently, only if the secret symmetric key can be unsealed, the encrypted
data can be decrypted, and thus the binding of the encrypted data to a
certain platform state still holds.
Sealing can be used to create a key chain (or rather a tree) with the SRK
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at the root and with leaves that are either storage or signing keys. All
intermediate keys, which act as parents for other keys, must be storage keys.
New keys are only created inside the TPM and their private portions are
encrypted with their respective parent public key. Thus, the secret portion of
any key generated by a TPM is never available in cleartext outside the TPM.
Due to this fact, newly created keys are called wrapped keys.
Like the unsealing of sealed data, the usage of wrapped keys requires authen-
tication and can be optionally bound to a certain platform configuration.

2.2 Mobile Trusted Module

A Mobile Trusted Module (MTM) is basically an TPM version 1.2 [117], that
differs in certain aspects from the TPM design in order to be more suitable
for mobile device specific uses cases [36, 112].
For example, the differences include the concept of secure boot. In contrast
to an authenticated boot, which only measure the boot process, secure boot
aborts the boot sequence in case a step in the process could not be verified as
trusted. The verification in each step is accomplished by means of Reference
Integrity Metric (RIM) certificates, which include the reference measurement
for a particular step, and verified PCRs, into which the measurements are
extended. A verified PCR can only be extended in the context of RIM
certificate verification – not with the standard PCR extension command.
A further important difference is the introduction of two interleaving profiles
for an MTM. Depending on the owner entity of the MTM, one distinguishes
between Mobile Local Owner Trusted Module (MLTM) and Mobile Remote
Owner Trusted Module (MRTM). In the former profile the owner, such as a
mobile phone user, has physical access to the mobile device and in the latter
profile the owner has no physical access to the device, but has an interest in
ensuring the integrity and confidentiality of its data on the device. Examples
for remote owners are the device manufacturer or a network service provider.
In order to support these parallel stakeholders the reference architecture
presented by the TCG [113] provides the possibility of deploying several
MTMs, each with a different owner, on one single device.
One key feature of the MTM specification, which enables the support for
parallel MTMs and which also provides the opportunity to deploy MTM
on contemporary hardware, is the possibility to implement the MTM as
software rather than as discrete hardware. The security properties regarding
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the necessary isolation and integrity for such a software MTM are specified in
form of new trust roots, that must be met by the underlying platform in order
to guarantee the required trustworthiness and protection of the software-based
MTM.
The Roots of Trust (RTs) have to be initialised during the initial boot steps,
in a state where no software is executing prior to any MTM. The specification
defines four RTs – namely the Root of Trust for Enforcement (RTE), the Root
of Trust for Storage (RTS), the Root of Trust for Verification (RTV), and
the Root of Trust for Reporting (RTR). The RTE states that the integrity
and authenticity of the MTM execution environment has to be guaranteed
with platform-specific mechanisms. The RTS is established by means of some
form of device secret. Some immutable or similarly protected code constitutes
the RTV, which is an engine that makes the initial measurements to be added
to the MTM before the module is fully functional. The RTR holds the secrets
required for attestation purposes. It has to be noted, that the RTR and RTV
can be contained in the RTS, if the RTS has suitable statefulness guarantees.
Exemplary implementations of a software-based MTM are based on SELinux
and a kernel-level isolation domain [6, 126]; virtualisation architectures [121,
50, 99]; or on processor security extensions like ARM TrustZone [18], Texas
Instruments M-Shield [104, 107], or Sun JavaCard [106], as demonstrated in
[35] and [30].

2.3 Dynamic Root of Trust for Measurements

A further important change introduced in the TPM v1.2 specifications is the
concept of a Dynamic Root of Trust for Measurement (DRTM), also denoted
as “late-launch”. This concept is an alternative to the Static Root of Trust
for Measurement (SRTM). The TCG identified the following considerable
drawbacks of the SRTM approach [26]:

1. The SRTM solution does not scale, because it relies on a possibly large
chain of trust, of which a verifier has to know all components in order
to evaluate its trust into the system.

2. Moreover, the time of measurement is at boot time when the system
starts securely into a trusted state. But between this point in time and
the point of the trust verification other applications may compromise
the system’s trustworthiness. Thus, one requires a measurement at
runtime and not load-time.
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3. Furthermore, the SRTM approach requires all executable content within
the Trusted Computing Base (TCB) to be measured, but many systems
have an ill-defined TCB and therefore force the SRTM approach to
measure the executable content on the whole system.

Additionally, Kauer has shown in [59] that SRTM is prone to several attacks,
which compromise the trustworthiness and security of the system, and that
there currently exists no secure implementation of a static authenticated boot.
In contrast to SRTM, DRTM does not operate at boot time, but allows that
the Root of Trust for Measurement (RTM) can be initialised at any point
in time. This process can also be executed repeatedly. A key feature to
this capability is the introduction of a new CPU instruction, which creates a
hardware-secured execution environment that can be attested by means of a
TPM.
Both Intel and AMD have introduced this instruction in CPUs available
for commodity systems. Intel included it as part of their Trusted eXecution
Technology (TXT) [54], formerly known as LaGrande Technology, and named
the instruction SENTER. AMD integrated DRTM as underlying trust mecha-
nism in their Secure Virtual Machine (SVM) technology [12, 13] and called
the instruction SKINIT. Although the DRTM mechanisms of both vendors
are similar, their implementations differ when it comes to the implementation
details. The practical work in this thesis is based solely on the AMD platform,
but in principle the results apply also to Intel platforms.
The SKINIT instruction takes as its sole argument the physical memory address
where a Secure Loader Block (SLB) is located. That SLB contains a program
image called the Secure Loader (SL), which includes all necessary the code
and initialised data structures for its execution in the secure environment. The
instruction re-initialises the CPU such that it establishes a secure execution
environment for the SL code. The execution of the SL is hardware-protected in
a way that it is safe from software-based attacks and even ordinary hardware
attacks [13, Section 15.26].
Before the CPU hands over control to the SL, it enables the Device Exclusion
Vector (DEV) protection for the physical memory region of the SLB in
order to prohibit any Direct Memory Access (DMA) to this region through
attached devices. Further, it clears the Global Interrupt Flag (GIF) in
order to prevent any code executing previous to the SKINIT instruction from
regaining control. SKINIT also disables the hardware debug features, since
this might subvert the secure execution of the SL. On a multi-processor
system an additional inter-processor handshake is performed in order to
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halt all Application Processors (APs), because the SL has to execute on the
Bootstrap Processor (BSP). All of these measures guarantee the atomic and
hardware-isolated execution of the SL code. In essence, SKINIT puts the
platform into a state that is very similar to the state directly after a reboot
and thus provides most of the security benefits of a reboot.
The key step in the late-launch process is the measurement of the SLB by
the TPM. The SKINIT instruction is the only instruction that creates the
necessary LPC bus cycles to acquire locality 4 of the TPM and trigger a reset
of the dynamic PCR17 to zero (See also Table 2.1 on page 7). Subsequently to
this reset, SKINIT hands over a copy of the SLB to the TPM, which extends
the reset PCR17 with a hash of the SLB. It is important to notice that
only the CPU is able to fabricate this specific new value of PCR17, since
software is not able to reset PCR17 to zero and a system reboot resets it
to −1. Moreover, it is important to notice that the PCR17 is at this point
unique1 for each SLB identity and thus, if the SLB is trusted, the PCR17
value is trusted and it forms the anchor of a new, dynamically created chain
of trust.
After the protection mechanisms are enabled and the TPM has measured the
SLB, the CPU enters flat 32-bit protected mode and hands over the control
to the SL by jumping to the entry point of the SL.
Figure 2.1 illustrates the layout of an SLB. The maximum size for a secure
loader block is 64kB. The first word of the SLB has to be the offset from the
SLB start address (saved in the EAX register of the CPU after the SKINIT
instruction) to the entry point of the SL. The second word has to be the size
of the SLB, which also defines the area that is measured by the TPM. The
unoccupied memory region between the SL code/data and the end of the SLB
(pointed to by the ESP register) is used for the SL program stack during the
execution. The SLB header contains the necessary data structures like, for
example, a Global Descriptor Table, to set up the execution environment
The rationale behind the late-launch concept is to bootstrap a secure OS or
secure VMM in an isolated and trusted way, that can be attested at any point
in time, without the overhead of an actual reboot and thus without the need
for an SRTM.
The SL would thus prepare the environment and the system for the boot
of the OS/VMM. In contrast to the SRTM, here the BIOS, the bootloader
and all software that ran before the SKINIT instruction are excluded from

1of course under the assumption that the used hash function is cryptographically secure
and thus has a sufficient pre-image and collision resistance
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Figure 2.1: SLB example layout (figure taken from [12, p. 56]

the TCB, since SKINIT resets the system into a clean state, similar to the
one of a reboot, from which the new secure OS/VMM is launched. Figure
2.2 illustrates the trust chains in both the SRTM and DRTM case. The
highlighted path segment depicts the late-launch of the Secure Loader. The
node HW denotes the involved hardware components like the CPU, TPM,
RAM, and Northbridge2, which are necessarily part of the TCB. Although
the BIOS is not included anymore in the trust chain of DRTM, Kauer argues
that the BIOS still has to be partially trusted, because one has to “trust the
BIOS for providing the System Management Mode (SMM) code as well as
correct ACPI tables. As both can be security critical, a hash of both of them
should be incorporated at boot time into a PCR by the operating system” [59,
p. 4]. For that reason, DRTM should be supplemented by SRTM up to the
point where the BIOS is measured in order to provide some means to attest
the absence of SMM based attacks like the one presented in [123].
Implementations of this late-launch concept are Kauer’s OSLO [59] and Intel’s
tboot [53].

2the chipset responsible, among other things, for the communication between the CPU
and the RAM
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Figure 2.2: Comparison of trust chains in SRTM and DRTM

2.4 Flicker

The Flicker architecture by Jonathan McCune et. al. [73, 72] leverages DRTM
to establish a secure execution environment that offers the above mentioned
hardware-security features. But in contrast to the original TCG intentions to
use DRTM to late-launch a secure OS/VMM, Flicker uses DRTM to execute
a small, security-sensitive part of a program under the protection of DRTM.
The selected code is denoted as Piece of Application Logic (PAL). A special
emphasis of the Flicker architecture is the minimisation of the mandatory
trusted computing base of the PAL.
The Flicker project declared the following goals for their architecture: Isolation
of security-sensitive code from all other software and devices; protection that
is provable to a remote party; meaningful attestation of exactly the code
executed, its inputs, and outputs; and to have a minimal mandatory TCB for
the security-sensitive code.
While the isolation and the provable protection goals are inherently fulfilled
through DRTM, the TCG intentions for DRTM miss the other two goals. If
DRTM is used to bootstrap a secure OS or VMM, the TCB for an application
running on top of these expands to the secure OS/VMM. Bearing in mind
that a mainstream hypervisor like Xen [32] comprises about 50,000 lines of
code, it is obvious that the mandatory TCB is significantly increased and that
attestations include unnecessary and uninformative facts about the platform
state. Flicker takes here “a bottom-up approach to the challenge of managing
TCB size” [73, p. 317].
In Flicker, the initial mandatory software TCB consists of about 250 lines of
code, to which the programmer of a PAL adds only the necessary security-
sensitive code of his program. Due to the fact that DRTM provides the
hardware isolation from all other software and the protection from software-
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Figure 2.3: Memory layout of an SLB, containing a PAL, for Flicker (figure
taken from [73, p. 318])

based attacks, all software executing before an SL, like the BIOS or OS, are
excluded from the TCB.
The hardware TCB includes the CPU, the RAM, the North Bridge, and the
TPM. Thus, the attestation of the executed SL contains only meaningful,
tractable information for a remote verifier in order to assess the trustworthiness
of the PAL.
Architecturally, Flicker suspends the current execution environment (most
likely the OS), executes the SKINIT instruction to initiate the secure environ-
ment in which the PAL then executes, and afterwards resumes the previous
execution environment. To provide a better abstraction of the rather low-
level and complex setup of an SLB and the SKINIT execution, the Flicker
architecture includes a kernel module that provides virtual file system entries
for the I/O communication between the user/application and the PAL as well
as a core library against which PALs are linked. The library is responsible
for setting up the secure environment and tearing it down. It is called SLB
Core and forms the mandatory part of the software TCB.
Figure 2.3 illustrates the memory layout of an SLB for Flicker that contains
a PAL. Corresponding to the general layout of a secure loader block in Figure
2.1 (p. 15), the first two words of the SLB contain the offset to the entry
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point (of the SLB Core initialisation function) and the size of the SLB – here
the SLB Core size plus the size of the PAL code.
The first bytes of the SL code segment contain data required to properly
set up the execution environment. These include an uninitialised Global
Descriptor Table (GDT) and a Task State Segment. The GDT is a skeleton
defined at the time the SLB Core is linked with the PAL code. The next
bytes of the SL code are occupied by an initialisation function, executed after
handover of the control from CPU to SL (i.e., it is the actual entry point of
the SL code section), an exit function that cleans up before the SLB returns
to the legacy OS, and the SL part of the resumption code.
The GDT and Task State Segment are required during the execution of the SL
code, because the initialisation function enables the processor’s segmentation
support, whereby the segments start at the base of the PAL code. Since this
value is unknown at build time of the SLB, the GDT and Task State Segment
are simply skeletons, which will be fixed up by the Flicker kernel module
before the SKINIT execution.
Because the SKINIT instruction disables the paging mechanism for virtual
memory, the exit function has to re-enable this feature in order to cleanly
resume the operation of the legacy OS. The higher 12kB of the PAL memory
region are therefore used by the exit function as space to restore the page
tables, required to re-activate the paging mechanism. The PAL code in this
memory region is thereby overwritten with the page tables. However, the
exit function executes last in the PAL and is located in the lower region of
the SLB, thus no critical code at this point in time is overwritten during the
restoration.
The free memory region between the end of the PAL code and the end of
the 64kB SLB area are used as stack space during the PAL runtime. In the
default setting SLB Core reserves a 4kB stack.
The Flicker kernel module allocates 128kB of kernel memory space, of which
the lower 64kB are used for the SLB, while the higher 64kB are used to
store the input parameters from the application to the PAL and the output
parameters from the PAL to the application. In its current design Flicker
supports 4kB input and output, but provides the possibility to increase these
sizes. The input and output values are written/read via the file system entries
of the kernel module. Moreover, the kernel module uses the first bytes of
the input memory region to store the CPU state just before the SKINIT
instruction. This state is then restored from this well-known address on
return from the SLB to the legacy OS.
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Figure 2.4: Time-line showing the execution of a PAL with Flicker (figure
taken from [73, p. 318])

The remaining 56kB of the allocated kernel memory may be used for optional
PAL code. But it should be noted, that the higher 64kB of the allocated space
are per default not protected by SKINIT, and it would require additional steps
in the initialisation function to set up this protection by means of the DEV.
In that case, this new protected memory region should also be measured
and the measurement extended into PCR17 in order to guarantee a sound
attestation.
Figure 2.4 shows a detailed time-line of the particular steps of a PAL execution
with Flicker.
Before the execution of any PAL, the Flicker kernel module has to be loaded.
As already mentioned, the kernel module provides file system entries that
simplify the I/O communication with the PAL, e.g., an entry to which
applications write the SLB that contains their PAL, entries for the input and
output parameters of the PAL, and a control entry to initiate the SKINIT
execution. Moreover, the module is necessary, because SKINIT is a privileged
instruction that requires kernel level permissions to execute and, furthermore,
the memory region for the SLB has to be allocated in the kernel’s address
space. The physical address of the latter one is denoted as slb_base.
An application, that wishes to execute a PAL, first writes the SLB memory
image and optional input parameters to the corresponding file system entries
of the Flicker kernel module. It then triggers the execution through the control
file system entry. The kernel module then fixes the skeleton GDT of the SLB
image, takes the necessary steps to suspend the legacy OS (e.g., halting all
application processors), saves the CPU state of the bootstrap processor, and
executes the SKINIT instruction, which starts the Flicker session.
A Flicker session consists of the execution of the PAL (preceded by the very
short initialisation function), a subsequent cleanup when the PAL has finished,
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a PCR17 extension, and then the resumption of the legacy OS.
The initialisation function simply enables the processor’s segmentation feature
based on the initialised GDT, loads the segment selectors, and then jumps
to a well-known function in the PAL code. With this jump the PAL code
starts executing and on return it jumps to the exit function. The initialisation
function also makes sure that the PAL executes on CPU privilege level 3 (ring
3) and requests the locality 3 from the TPM for usage by the PAL.
The exit function is responsible for the return to the higher CPU privilege
level 0 (ring 0) via a call gate3 in the GDT, for cleaning up, for extending
PCR17, and for the resumption of the legacy OS. Cleanup means the erasure
of sensitive data that is stored in memory. This is necessary, because the
protected memory becomes accessible again to the untrusted legacy execution
environment after the return.
Further, PCR17 is extended with a well-known value. This enables a remote
verifier to distinguish between measurements taken during the trusted and
secure execution of the PAL and measurements taken afterwards by the
untrusted legacy execution environment. Moreover, it prevents software in
the legacy environment from unsealing data that has been sealed to a specific
PAL via its PCR17 value.
The SL resumption code then restores the page tables, reloads a GDT that
covers all of the memory, as required by the legacy OS, and enables paging
plus virtual memory based on the restored page tables. Control is then
handed over to the legacy OS – to be precise to the Flicker kernel module
– which restores the CPU state, activates the halted application processors,
and re-enables global interrupts.
After this reactivation of the legacy OS, the application can receive the PAL
outputs via the corresponding file system entry of the kernel module.
The application is, furthermore, able to attest the execution of the PAL and
the integrity of the result. If the PAL extends PCR17 with the hashes of
the input and output parameters before the register is extended with the
well-known value that marks the end of the Flicker session, then PCR17
reflects exactly the specific combination of the PAL, its parameters, and its
result. Based on the TPM remote attestation of PCR17 and the mechanism
how the PCR17 value can only be fabricated by a late-launch, the application
can convince a remote verifier that a particular PAL has been executed and
that it has indeed produced the particular output from the particular input.

3a mechanism that allows less privileged code to call code with a higher privilege level
via a CALL FAR to a function referenced in the GDT
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Although the execution of a PAL seems quite complex and the suspension
of the operating system during the execution of the PAL – during which
all external interrupts are ignored – looks rather interruptive, performance
and data integrity tests by McCune et al. [73] show that the impact on
the operation of the legacy OS, even under higher load, is negligible. File
consistency is preserved, even during larger bulk data transfers and during
file downloads that interleave with Flicker sessions and thus are interrupted.
The test results have been empirically verified in the context of this thesis.

2.5 Problem Statement

The goal of this thesis is to design an architecture that uses DRTM to
implement a secure credential execution and storage for applications. The
foundation of this architecture is the Flicker infrastructure, which fulfils the
necessary presupposition, namely a hardware-based isolation of the measured,
secure execution environment for the credential platform from the legacy
environment, and beneficially also a small Trusted Computing Base for the
software-based MTM.
As described in Section 2.3, the launch of a Secure Loader (SL) puts the
platform into a state similar to the one after a reboot and thus isolates
the SL from the legacy environment such that it executes securely. The
Flicker infrastructure, as explained in Section 2.4, adds to this concept the
functionality of easily resuming the legacy execution environment. That way,
it offers the possibility of executing security sensitive parts of applications
under the hardware-based protection of DRTM.
The way how DRTM executes in the context of Flicker constitutes a security
risk, if the secure execution environment is used for an application-specific
credential platform, because due to DRTM the SLB and thus the PAL
are stateless and not bound to the corresponding application in the legacy
environment.
In the Flicker infrastructure, PALs may receive input from the legacy envi-
ronment and thus this input defines the state of the PAL. But this approach
also requires an authentication of the input in order to verify the data’s
origin. Bearing in mind, that an SLB is just a byte blob consisting of code
and pre-initialised data, it is not feasible to deploy any secrets, like keys or
passwords, used for authentication, securely within the SLB.
Another approach to achieve applications’ authentication could be to store
the state of the PAL inside the SLB data section and to rely on remote
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attestation of the PAL execution in order to verify the state. But for several
reasons this approach fails. For instance, valid states could be replayed by
just overwriting the SLB image and further, since the state is likely to be
mutable, a remote verifier had to keep track of all possible valid states.
The statelessness of PALs also entails security issues like the misuse of deployed
credentials by other software on the system. For example, an SLB containing
a PAL that establishes for an online banking application an attested, secure
channel to a remote server, might be launched by malware on the system.
Since there is no link between the legacy environment and the PAL, the latter
one will successfully establish this channel on behalf of the malware.
The designers of the Flicker infrastructure have identified the statelessness
problem in the context of multiple Flicker session scenarios. They propose a
sealed storage solution, based on the TPM sealing capabilities, to maintain the
state of the PAL. But this solution is PAL specific and not application-specific.
It ensures that only the legitimate PAL is able to unseal the state, but it
does not solve the problem that the sealed state, and thus the PAL, are not
bound to an application.
In the same context, the Flicker designers identified the necessity for replay
prevention mechanisms of the sealed state and sketched a solution based on
counters, which are deployed in the TPM non-volatile memory. Unfortunately,
the available non-volatile memory space is very scarce and considering the
high number of applications on a normal platform which would use a PAL,
it is extremely likely that the NVM space is insufficient to provide replay-
protection for all states. Alternatively, the replay prevention could be based
on TPM monotonic counters. However, the TPM specifications define the
minimum number of monotonic counters per TPM to only four and most
modules on the market do not provide more than this minimum. Hence, the
possible number of PAL states, that are protected against replay-attacks, is
considerably constrained. Moreover, only one TPM monotonic counter is
allowed to be incremented – possibly multiple times – between system reboots,
hence prohibiting any interleaving PAL executions that require different
monotonic counters to be updated. Thus, a more feasible approach to the
replay prevention has to be provided by our architecture.
A software-based Mobile Trusted Module (MTM) was selected as the application-
specific credential platform in our architecture. The above stated issues imply
that the MTM is by default stateless and not bound in an application-specific
manner, since the link between the legacy environment and the MTM PAL is
missing. The architecture therefore has to solve three fundamental problems
in order to achieve secure application-specific MTMs:
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1. a mechanism to unambiguously identify the application that initiates a
Flicker session and thus its specific MTM

2. a mechanism that, based on the prior application identification, binds
the Flicker session or the MTM to the identified application in an
one-to-one manner

3. a mechanism that isolates a bound MTM PAL state from PALs other
than the legitimate one, executing on behalf of the legitimate application
corresponding to this MTM

These points form the fundamental requirements to enable the implementation
of application-specific MTMs based on the Flicker infrastructure. Additional
security requirements include the replay prevention of old MTM states or
means, based on the platform TPM, to attest the computational results of
the MTM.
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Related Work

As described in the preceding chapter, the Flicker infrastructure provides
applications with the possibility to execute sensitive computations in an
isolated environment that is resistant against software-based and simple
hardware-based attacks. The kind of code executed in such a Piece of
Application Logic (PAL) is generic and only limited by the constraints imposed
on it by the DRTM mechanism, for example in terms of code size. Based
on the TPM sealing and attestation capabilities, the infrastructure further
offers secure storage of data and the authenticated, secure reporting of the
executed PAL. Moreover, DRTM noticeably reduces the required Trusted
Computing Base for the security of the PALs, because it excludes the bulk
of the BIOS, the entire bootloader, and the legacy execution environment
from the TCB. The declared goal of this thesis is the design and evaluation
of an architecture, built on top of Flicker, that implements an application-
specific credential storage and usage. The credential platform chosen for our
architecture is the Mobile Trusted Module, which provides the application’s
developer with standardised interfaces (TCG Software Stack) that already
have been implemented in popular libraries like TrouSerS [8].
In this chapter different approaches to the secure storage and execution of
credentials are presented. Their respective precedences and drawbacks, with
respect to the above mentioned architecture attributes, are briefly evaluated.
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3.1 Credential Managers

Password Managers and Key Stores

Probably the most widespread credentials are passwords and user keys (e.g.,
for PKIs), and thus by consequence the probably most widespread form of
credential platforms are password managers and key stores. Both are today
by default included in almost all operating systems and are accessible through
system software or cryptographic service providers. Also, almost all Internet
applications like web-browsers, email clients, etc., as well as stand-alone soft-
ware applications provide them independently from the OS. Normally, these
types of software use cryptographic means to guarantee the confidentiality
and integrity of the password/key database stored on persistent storage. Ad-
ditionally, access to this database may be authenticated by a master password
that the user has to remember. In general, all these approaches are subject to
software-based attacks like malware (trojan horses, key-loggers, etc.)[103], be-
cause the security sensitive computations (like the decryption of the database)
or user I/O are not performed in an isolated execution environment. Thus,
the Trusted Computing Base of this software includes the operating system
and other software running on the platform. Moreover, the credentials are
not stored in an application-specific manner, because every application with
knowledge of the master password or access to the database encryption key
is capable of accessing the credentials. Furthermore, password managers and
key stores generally do not provide standardised interfaces that enable other
entities to use or retrieve the credentials.

Single Sign-On

Newer, more generic solutions for identity management of the user are gaining
popularity. In this context, the user delegates the management of his identity
and credentials to a Trusted Third Party (TTP) and is only once required to
authenticate himself to the TTP (Single Sign-On). For example, the popular
OpenID protocol [5] implements a decentralised authentication system for web-
based services and websites, whereby the user delegates his authentication to
an OpenID provider. The protocol is open and standardised, thus guaranteeing
a variety of providers and decentralisation. The user authentication at websites
or services, succeeding the user login at the provider, is URL based. The
OpenId protocol centres around the user identity and thus credentials are not
stored or used in an application-specific manner, since each application that
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implements the protocol has access to the same user credentials. In terms
of isolation and secure storage, OpenID exhibits the same vulnerabilities as
usual web logins, including phishing, key-logging, or session hijacking. Other
identity management solutions are the SAML (Security Assertion Markup
Language) based Liberty Alliance [3] and Shibboleth [7] projects. Microsoft
offers with CardSpace [10] a comparable, but centralised, solution as part of
their .NET framework. In CardSpace, the user manages different identities
(i.e., InformationCards), which are kept inside his “wallet” (i.e., CardSpace
or Identity Selector). Since the wallet is an application running on the user
machine, it is prone to software-based attacks at runtime and to the same
issues as encrypted databases for password or key storage.

Central Credential Repositories

A solution proposed by the Grid community to deal with user credentials in
the context of PKI infrastructures, namely the user’s key pair, are central
credential repositories like the MyProxy [82] system. In this system the user’s
long-term credential, i.e., his key pair, is stored on the proxy which acts as
the repository. After the user has been authenticated at the proxy and has
authorised the use of his credentials, the proxy derives a short-term credential
from the long-term credential and uses the former for the user authentication
inside the grid.
In recent research this system has been strengthened in terms of the security
of the long-term credential. In [67] the authors use hardware-security (IBM’s
4758 secure co-processor [33]) to increase the security of the private key
storage and generation. In [70] this approach is extended by further security
features. Short-term credentials are accompanied by certificates that attest to
the conditions under which the credentials were created, hence other entities
can evaluate the level of trust that they put into the short-term credentials.
Moreover, a policy framework was introduced, which allows the user to define
the usage of his long-term credentials.
In both cases the authors’ motivation is to improve the security of the private
keys and avoid the TCB on the user-side. The application of secure hardware
provides highly secure storage and execution of the credentials, thus avoiding
the insecure storage on the user-side as well as the complex, ill-defined TCB
on commodity desktop systems of users, which compromises the security of
the credentials at runtime. However, the user has to authenticate himself
to the proxy, most likely via his web browser, and thus malware may still
be able to impersonate the user and abuse his credentials. The repository
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system is user-centric – providing the user with mobility – but it does neither
store or execute the credentials in an application-specific manner nor provide
standardised interfaces.

On-board Credentials

A new approach to the credential storage and use, especially for (but not lim-
ited to) mobile devices, are On-board Credentials (ObC) by Nokia Research
Center, Finland [64]. ObC combines the high security of general-purpose
secure hardware, like TI M-Shield [104, 52], with the flexibility of virtual
credentials, like passwords. The secure hardware provides hereby an iso-
lated secure execution environment, secure storage, and means to ensure
the integrity of the secure environment. This approach is open in the sense
that anyone is allowed to design and deploy their own credential mechanism
without the compulsory involvement or approval of the device manufacturer or
a TTP. ObC can be deployed on top of DRTM and is thus from a functional
point of view a very suitable option as credential platform for this thesis. But
on the other hand, it is complex and requires, in comparison to the MTM
code base [35] available to us, a rather complicated set-up. Moreover, ObC
does not provide standardised interfaces for applications in contrast to MTM.
Thus, although ObC would be more suitable in terms of functionality, MTM
is chosen as credential platform for this thesis for reasons of feasibility and
compliance to standards.

3.2 Security based on Isolation and TCBMin-
imization

TruWallet

A wallet solution without the delegation of the identity management, that
offers strong protection of credentials and binding to the user’s platform
configuration, is presented in [41]. This solution, named “TruWallet”, is based
on virtualisation via the Turaya security microkernel [93], which provides a
secure GUI for trusted paths, support for Trusted Computing based on a
TPM, secure execution environments for applications, and is interoperable
with existing Operating Systems and applications.
In the TruWallet architecture, the wallet application executes inside its secure
environment (compartment) and acts as a web proxy that performs the user’s
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login at websites. Hereby, TruWallet implements protocols that establish a
shared secret between the user’s wallet and a server and additionally offer
migration of the credentials based on TPM functionality.
The security of the execution and of the stored credentials is guaranteed
through the security kernel, its TC capabilities for sealing, and the compart-
mentalisation of the applications. Only the untampered kernel and wallet
application, measured by an authenticated boot, are able to unseal the creden-
tials. Thus, the security kernel has to be fully trusted at runtime and forms
the bulk of the Trusted Computing Base (TCB) in the TruWallet architecture.
The isolation of the credential execution environment is provided by the
kernel and hence depends on the guaranteed integrity of the kernel at runtime.
Advanced software attacks against the kernel might break this guarantee
and subvert the kernel in order to reveal secrets. The TruWallet authors
argue that “[the] TCB cannot be compromised during runtime because of the
assumption that it is small enough to be verified and tested thoroughly” [41,
p. 25].
Although the security kernel is substantially smaller than commodity Operat-
ing Systems and thus in the size range for formal verification, this assumption
is at this time only conditionally valid. The currently most famous example
for a formally verified microkernel is seL4, which has approximately 7500
LoC [60, 2]. The verification implies the fulfilment of critical security prop-
erties like the absence of code injection attacks, buffer overflows, unchecked
user-arguments, or NULL pointer access, but the actual goal of the verifica-
tion was to prove functional correctness and not the security. Thus, certain
security-relevant properties, such as covert channels, were not included in the
proof.
The verification was achieved in an interactive manner based on the theorem
prover Isabelle/HOL [85]. In total, the proof comprises about 200,000 LoC.
But the authors of [60] state that they assumed certain design simplifications
of the kernel. For instance, the proof was done for an ARMv6-based platform
without Symmetric Multiprocessing (SMP). The SMP version or the x86 port
of seL4 has yet to be verified.
Another current issue is that the TCB is not fully covered by the proof,
because the memory management, which is part of the TCB, is pushed off
the kernel into user-space and has to be verified separately. Further potential
issues for an x86 port of the proof are pointed out in the security discussion
of [56, Section 3].
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Hypervisors and Microkernels

Although a formally verified microkernel is not yet available for the x86
platform, which is targeted in this thesis, microkernels and hypervisors offer
good security benefits through a decreased perimeter of the TCB compared
to the commodity OSes and through a high level of isolation for applications
that deal with sensitive information like credentials. This principle has,
for instance, been shown by TruWallet. The designs of today’s commodity
operating systems are not based on microkernels or hypervisors, but are
monolithic, meaning almost all of the functionality, including the drivers,
executes in kernel privileged mode. Applications operating on top of such
kernels have to include the bulk of the OS into their TCB. Considering the
growing complexity and size of monolithic kernels, it is clear that the number
of security issues rises as well, thus advocating new approaches to secure OSes
and architectures [68].
The microkernel/hypervisor based approach has been adopted by several
projects in order to provide a higher level of security through isolated, pro-
tected execution environments and a minimal, simpler TCB. For example,
the Terra architecture [42] implements a Trusted VMM that partitions the
platform into ordinary VMs and “closed box” VMs that provide the func-
tionality of a dedicated, Trusted VMM protected closed platform to which
software can tailor their software stacks based on their security demands.
The already mentioned Turaya security kernel of the EMSCB project [93] and
the Qubes architecture [56], based on the Xen VMM, both compartmentalize
applications and provide a trusted GUI to the compartments.
Both the Xen based approach described in [125] and the Overshadow archi-
tecture [27] protect the application data privacy through an en-/decryption
mechanism of the applications’ memory pages.
The Nizza architecture [102] extracts the security sensitive parts (AppCores)
at the system software level and at the application software level and runs
them as isolated trusted processes on top of the TCB, while the untrusted
parts run on top of an untrusted legacy OS.
In [109] the authors describe their Xen based Proxos architecture, which
allows applications that run in private VMs to configure their trust into the
legacy OS by partitioning the system calls into trusted and untrusted ones.
Proxos then routes the untrusted system calls to the legacy OS and trusted
system calls to a private OS inside the private VM.
The NOVA architecture [105] aims specifically at minimising the TCB through
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decomposing the virtualisation architecture and implementing virtualisation
in user-space (microhypervisor approach).
Also Microsoft’s Next-Generation Secure Computing Base (NGSCB) [38]
concept distinguishes between a trusted and an untrusted partition for soft-
ware. The NGSCB design hereby envisions and exploits an improved platform
hardware support.
In general, the major chip vendors have improved their hardware support
for virtualisation and platform security. This includes Intel’s VT/TXT [54]
or AMD’s AMD-V/SVM [12], which are adopted by projects like Xen or
VMWare. In their Safer Computing Initiative, Intel describes approaches
to secure computing leveraging the improved hardware support [44, 94].
Research projects that make specific use of the improved hardware features
are presented by the CMU [100, 71]. The authors of [100] describe an
architecture that implements a tiny hypervisor (about 1100 LoC), which uses
the CPU supported memory virtualisation capabilities in order to isolate
the memory region of a commodity OS kernel from the rest of the platform
software, thus protecting the integrity of the kernel at all times from software
based attacks. The TrustVisor architecture [71] settles in the middle-ground
between Flicker and a full-fledged hypervisor regarding the TCB perimeter.
TrustVisor (about 6300 LoC) adopts the Flicker concept of PALs and provides
applications with the possibility to register their PALs at the TrustVisor. The
PALs execute then in total isolation from the rest of the system’s software
and from malicious DMA-capable peripherals. The isolation is enforced by
CPU virtualisation features. In addition, each PAL can be attested remotely,
based on a DRTM measurement of the TrustVisor, extended with the PAL
measurement. Moreover, the TrustVisor provides each PAL with it’s own
software µTPM. The main motivation for the TrustVisor design is to avoid
the performance penalty of Flicker, which has to be paid in order to achieve
its extremely minimal TCB.
Microkernel-based architectures, e.g., the L4 kernel [4], split both the OS and
the applications up into multiple components, which run in their own process.
The microkernel is responsible for isolating the processes from each other.
Common to all the above mentioned approaches based on a hypervisor or a
microkernel is that they are suitable for providing a high level of isolation for
the execution environment of an application and to provide further resistance
against software based attacks. Furthermore, it has already been shown that
such compartmentalised applications are suitable to implement standardised
credential platforms like the MTM [121, 50, 99] and due to projects like
IBM Research’s vTPM [20] VM’s have access to the physical platform TPM.
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Compartmentalised applications are also easy to measure, enabling advanced
security features like TPM based sealed storage or remote attestation, as
shown, e.g., by the TruWallet architecture.
The essential prerequisite for all these guarantees is the integrity of a trusted
hypervisor/microkernel at runtime. While SRTM or DRTM can ensure the
trustworthiness at boot-time, it is far more complex to guarantee integrity at
runtime – Time of Check to Time of Use (ToCToU) problem – and this issue is
investigated in contemporary research [69, 101, 19, 28]. Thus, the hypervisor
or microkernel has to be part of the TCB and is a potential security risk.
Moreover, in contrast to the Flicker architecture, compromised software at
the highest system privilege level (i.e., the kernel or the VMM) can jeopardise
the secrecy of applications’ credentials.
A good overview of the benefits and risks of hypervisor/microkernel based
architectures and examples for successful attacks are given in [84, 122, 62, 14,
87, 47, 88, 15, 16].

3.3 Platform Security

Mandatory Access Control

Access control to credentials stored on persistent storage, or in case of the
Flicker based architecture to the Secure Loader Blocks (SLBs), can be achieved
through Mandatory Access Control (MAC) systems. On Windows, MAC is
part of the Mandatory Integrity Control [75]. For Linux exist several MAC
schemes, most of which are based on the Linux Security Modules (LSM)
architecture [124]. The most famous scheme is the Security-Enhanced Linux
(SELinux) [6], but other approaches exist, like AppArmor [81], TOMOYO
Linux [83], or SMACK [98]. In [37] Enck et. al. present PinUP, an LSM based
approach to pin files to applications in form of an access control overlay. A
role-based access control scheme, not based on LSM, is part of grsecurity [1]
for Linux kernels.
Regarding our stated problem, SLB images, and thus PALs, can be bound
to applications via access control policies. However, common to all these
approaches is that the access control scheme relies on file system properties
like file attributes or the file path. These properties are prone to passive
attacks, such as changing the file attributes. Moreover, only the SLB image
is bound to the application, but not the PAL execution environment or the
PAL state. Our architecture implements exactly this link, thus providing a
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stronger binding than mandatory access control. However, MAC can be used
as a supplementary mechanism in our architecture.

System Integrity

One approach to ensure the system integrity is binary signing. While this
approach is, for example, heavily used in the Symbian OS security architec-
ture (see Section 3.4), it is not yet very common for desktop systems. The
latest Windows OSes or the Ubuntu/Debian Linux package manager make
use of signed binaries in order to verify the integrity and authenticity of
downloaded installer executables, but it is not used at load-time of already
installed software. Binary signing implementations for Linux are for instance
IBM Research’s solution [119] or the newer, open-source DigSig [17] infras-
tructure. In both cases, executables are only executed if their signature can
be successfully verified. Similarly, libraries can only be loaded successfully if
their signatures could be verified. In contrast to binary signing on Symbian
OS, both these systems are built on top of an ill defined TCB, i.e., the bulk of
the Linux kernel is part of the TCB. Considering the size of the Linux kernel
(several million lines of code) it is obvious that this TCB is easily vulnerable
to attacks.
An alternative approach that is based on TCG trusted computing features is
the already outlined Integrity Measurement Architecture (IMA) [95] (Section
2.1.1 on page 9). In contrast to binary signing, IMA does not verify the
integrity of the executables, but solely records their measurements at load-
time. However, IMA is able to use the TPM in order to verify the integrity
of and to remotely attest its measurements.
Both solutions, binary signing and IMA, are suitable mechanisms to retrieve
the identity, i.e., hash, of an application in this thesis’ architecture. Here,
IMA was chosen for two important reasons. For one thing, IMA is already
a default part of the latest Linux kernels, whereas DigSig requires a kernel
patch. Secondly, the enforced integrity at load-time, which binary signing
offers, is less important in our architecture than the possibility to securely
attest the measurement with TCG TC means to a remote party.

3.4 Symbian OS Platform Security

The Symbian OS v9 introduced an enhanced security architecture that enables
the protection of the interests of stakeholders on the mobile phone, such as
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the consumers, the network operators, or the software developers [46]. The
key concepts of the security architecture are a small trusted computing base,
application capabilities, and data caging. The security model is strongly
oriented towards the principles defined by Saltzer and Schroeder [96], for
example open design and least privilege. The architectural goals comprise the
provisioning of a trust base and of a lightweight security model that supports
openness.

Trust Computing Base

At the core of the Symbian OS is a microkernel that acts as reference monitor.
The microkernel together with the computer hardware, the file server process,
and the software installer form the minimal TCB in the Symbian OS.
The Symbian OS system model assumes that there is only one single user on
the system. This simplifies the security model, which hence focuses only on
the processes in the system. Processes form the unit of trust in the security
model and they are classified in four different tiers of trust that correspond
to the privilege level associated with the process. The TCB is at the highest
privilege level and controls the access of system server processes inside the
Trusted Execution Environment (TrEE) to low-level operations, like the screen
hardware or the communications device driver. Code in the TrEE is trusted
but it is not running on the highest privilege level. Add-on software that
requires services from the TrEE or TCB has to be signed by a trusted party
with the necessary privilege level to gain access to the TrEE or TCB. The
software installer checks the requested privileges of the software and grants
them based on the privilege level of the certifying party. It further ensures
that the software can not affect the system integrity and protects sensible
low-level operations. The certifying authority is also responsible for validating
the code correctness and trustworthiness before signing. Although unsigned
software can be installed, this software has only the least privilege level, since
it is considered untrusted.
Additionally, Symbian OS v9 introduced identifiers for every software and
software vendor. The SID number identifies uniquely a particular application
and its version. The VID number on the other hand identifies a vendor.
A specific range of SIDs and VIDs is reserved for applications that have
been signed by a trusted authority, thus indicating the raised trust level of
this applications. In general, the decision to grant access to specific system
resources can also be based on this special SID and VID values and the trust
the installer puts into the specific application (version) or vendor.
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Furthermore, modern devices provide the technological means to protect
the TCB from being modified or erased while the system is offline. An
attacker or legitimate user could, for example, reflash the system and install
modified firmware that breaks the security of the TCB. Newer devices therefore
support the secure boot concept (as explained in 2.2) to protect the TCB.
However, despite its protected TCB SymbianOS v9 is not free of possible
attacks, especially on old CPU cores like ARMv5, as shown by, e.g., Collin
Mulliner [76].

Capabilities

Symbian OS implements a capability-based security model that follows the
concept introduced by Dennis and Van Horn [29]. The privilege level a
process requires is determined by the capabilities that it carries along. A
capability is defined as a token that needs to be presented in order to gain
access to a system resource, which are accessible in Symbian OS via service
APIs. Capabilities in Symbian are discrete and orthogonal. Although there
are currently only 20 different capabilities defined, they can be classified on
a broad scale in TCB, system, and user capabilities. As mentioned above,
the software installer validates via a digital signature at install time that a
program has the necessary rights to get to its requested capabilities. Software
that is already installed on the platform, i.e., in ROM, has been checked
manually. Following the principle of least privilege, a process can only load
libraries that have at least the privileges as the process does.

Data Caging

The third key concept of the Symbian OS security architecture is data caging
as the file access control model. Data caging is used to prevent unauthorised
access to system-critical or to confidential files. The access control is path-
based and does not implement explicit access control lists in order to save
the scarce storage space on mobile devices, to extend the battery life, and
to improve performance. To provide compatibility with existent software,
the access restriction apply only to certain special directories and all their
sub-directories, namely: \sys, \resource, and \private. Of special interest
for applications is the private directory, within which every application has
its own sub-directory based on its SID. The file server ensures that each
application has access to its own sub-directory, while the access to other
applications’ sub-directories requires a certain system capability.

35



3.5. HARDWARE TOKENS

Unified stores

Finally, the Symbian OS platform security includes unified key- and certificate
stores [108]. Applications are able to create their own store that provides
them with the possibility to manage their own keys and certificates via an
API.
The API for the key store enables the application to create, import, and
export RSA, DSA, and DH key pairs (in PKCS#5 and PKCS#8 format); to
protect keys by two-factor user authentication; and to perform common key
operations like signing or de-/encryption.
Via the API of the certificate store, applications are able to manage certificates
in one of the supported formats (X.509, WTLS, X.968); to construct and
validate certificate chains; and to assign a trust status and applicability
(i.e., purpose) to the certificates.
Based on the small TCB and the overall security concept to protect the
microkernel in Symbian OS v9, the stores provide a good solution to store and
use key and certificate credentials in an application-specific manner. However,
although the stores provide standard algorithms and formats, the interface to
them is proprietary to the Symbian OS and not standardised like, for example,
the TSS for TPM/MTM. Furthermore, the stores provide protection against
malicious software on the phone, but not against simple hardware attacks.

3.5 Hardware Tokens

A number of general-purpose secure hardware types have already been men-
tioned up to this point. For instance, the Trusted Platform Module (TPM)
or processor security extensions like ARM TrustZone [18], Texas Instruments
M-Shield [104, 107], Intel’s TXT [54], and AMD’s SVM [12]. This type of
secure hardware provides fundamental capabilities, like secure storage or
isolated execution environments, on which security architectures can be built
on.
Further, there exists dedicated secure hardware, such as smart cards (e.g.,
SIM card [39] or JavaCard [106]) or RSA SecurID [90]. Usually these types of
hardware offer high level of security, standardised interfaces like PKCS#11,
and a two-factor authentication for granting access. On the other hand, they
are designed for a dedicated purpose, e.g., SSO, and are often inflexible in
their applicability for other credentials than the intended one. Furthermore,
they target a human user and not the binding to a specific application.
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Architecture

In this chapter the architecture is presented that implements the application-
specific means to use and store credentials. The architecture leverages the
Flicker infrastructure and makes use of software-based Mobile Trusted Module
(MTM) as its credential platform, both presented in Chapter 2 Technical
Background and Problem Statement.
The basic idea behind the architecture is to provide all applications with
the possibility to securely execute their own MTM inside a Flicker session,
thus under the protection of DRTM, and with a minimal Trusted Computing
Base (TCB). The MTM can then be used by applications to store and to use
their credentials in a secure and isolated manner.
Additionally, the architecture supports the notion of Trust Domains (TDs).
Each Trust Domain is centred around a TTP which acts as the trusted remote
entity for the applications in its domain. Any application that wants to make
use of this architecture must chose its TTP and thus enters the TD of the
chosen TTP.
This chapter first explains the big picture of the presented architecture (Section
4.1). The subsequent sections (Sections 4.2 through 4.8) elaborate in detail on
how the architecture is designed in order to solve the problem stated Section
2.5.

4.1 Big Picture

In this section the general idea for the architecture is explained in order to
convey the big picture. With this big picture in mind, the following sections
will present the details of the architecture and elaborate more specifically on
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the exact functionality.
As a prerequisite several Trusted Third Partys are assumed, e.g., the applica-
tion vendors or independent parties, that establish their Trust Domains on
the platform by means of a special bootstrapping procedure. Applications can
then enter the Trust Domain of their selected TTP during the instantiation
their own MTM. Figure 4.1 depicts the Trust Domain concept with several
Trusted Third Partys and a central vendor who provides the architecture and
the Mobile Trusted Module. In this setup the applications trust their chosen
TTP and transitively the architecture vendor. The architecture does not im-
pose the active involvement of the vendor during the trust establishment, i.e.,
a restricting central trust authority, but is open to alternative establishment
methods that exclude an active vendor.

Vendor

TTP1 TTPn...

App2App1 ... Appi Appi+1

TD1 TDn

Figure 4.1: Applications in different Trust Domains

Figure 4.2 depicts the big picture for any application. The general motivation
for the architecture is to provide each application with its own MTM instance.
The applications leverage their specific MTM to use their credentials securely
in protocols involving a remote party and to store their credentials securely
when they are passive. Moreover, applications make use of the attestation
functionality of the TPM to attest the MTM execution in the same manner
as described for PALs in Section 2.4 (p. 20), but additionally include the
application ID in the quote.
In contrast to the platform TPM, which is shared among all software on
and users of the platform, the MTM is application-specific. The MTM is
implemented in software, in compliance with the MTM specifications, and
therefore requires strong isolation from other software and the operating
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Figure 4.2: Big picture of the credential storage and usage by applications

system on the platform in order to protect the security sensitive computations
and data (i.e., fulfill the Roots of Trust (RTs)). For that reason, the MTMs
are put under the HW protection of DRTM by means of a Flicker session.
Applications that want to make use of their specific MTM require a special
library, or shim, which is responsible for the communication with the Flicker
kernel module and which implements specific parts of the TCG Software
Stack1, denoted here as µTSS, since the MTM expects its commands in a
specific format defined by the MTM and TPM specifications [115, p. 8].
This library communicates with the Flicker kernel module in order to set and
retrieve I/O parameters for the MTM and to trigger the Flicker session. The
kernel module computes, in addition to the original Flicker kernel module
functionality, the application ID. This ID is implicitly passed as an argument
to the MTM PAL, where it is used to bind the execution to the application.
The MTM makes use of the platform TPM as well (e.g., as randomness source
or to read/extend PCR17), but in contrast to the legacy OS and applications,
which access the TPM at locality 0 (or the legacy locality), the MTM accesses
the TPM at locality 3. Therefore, any conflict in access to the TPM is avoided
in the exact manner as described by the TPM specifications[115, Section 9].
For the MTM implementation in software, it is important to notice that an
MTM consists of an immutable part, the MTM command logic, and a mutable

1a very compact explanation of the rather complex TSS is given in [26]
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part, the MTM state. In this architecture, this fact is exploited in the same
way as in [35] by splitting the MTM in these two parts. For this architecture,
that means that only the mutable MTM state is application-specific, while
the MTM functionality is identical for all application-specific MTMs. For
that reason, the commands are implemented as PAL, that takes the state on
which to operate as input.
The payload of each SLB is quite limited and in fact in this architecture the
MTM consists of a set of PALs, each implementing a certain subset of the
MTM logic. For each Trust Domain, these PALs share a domain-specific secret
key, only known to PALs currently operating in the specific TD (illustrated in
Figure 4.3). Certain PALs in this set play a special role, like the bootstrapping
of an TD or creating a new, application-specific MTM state in a TD, and
they will be explained separately in more detail in subsequent sections of this
chapter.

Setup

Bootstrap the TD for 

a TTP

Create MTM

Create a new app-

spec. MTM in the TD

MTMn

MTM Command (i-1)

MTM Command i

MTM1

MTM Command 1

MTM Command 2

...

Common Key

Trust Domain

Figure 4.3: Set of MTM PALs, bootstrapped for a particular Trust Domain

The life-cycle of each application-specific MTM consists of the following three
steps:

1. Instantiation: The MTM state is created by a special PAL. The
created state is bound to the application and thus can only be op-
erated on by this particular application. The created state includes
application-specific information, that can be used later for verification
and attestation purposes. Version information for each created state
ensure that no old state data can be replayed.

2. Operation: The application utilises its MTM to store and use its
credentials, e.g., sealed storage, cryptographic functions, or attestation.
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3. Deletion: The application deletes its MTM by removing any stored
MTM related data, like its MTM state, and informing its Trust Domain
about the deletion in order to free resources that had been allocated for
this MTM, like the state version information.

4.2 Application Identification

The first problem to solve is the secure and unambiguous identification
of the application that initiates a Flicker session. In this architecture
this problem is solved based on IBM Research’s Integrity Measurement
Architecture (IMA) [95].
An overview of the functionality of IMA was already given at the end of
Section 2.1.1 on page 9. IMA is available by default in the Linux kernel since
version 2.6.29.
For this thesis the IMA kernel module and the Flicker kernel module were
patched such that Flicker is able to enquire the measurement of a process
from the IMA subsystem. In particular, the IMA module was extended
with a simple API call that returns the latest stored measurement for a
specific inode in the file system. The additional interface adds solely 8 lines
of code to the IMA code base. The Flicker module was patched such that it
computes the aggregate hash for the calling application just before executing
the late-launch. To do so, the module inspects the task structure of the calling
process inside the kernel runtime system for the inodes of the executable, all
memory mapped files (e.g., dynamically loaded libraries), and configuration
files. It then requests the latest measurements for these files from IMA via
the new interface and computes the aggregate hash of the returned values in a
fashion similar to PCR extension (see page 6 in Section 2.1.1). The computed
aggregate hash forms then the (load-time) identity of the application at
call-time of the execution (or instantiation) command of its MTM. This hash
is passed on by the Flicker module as an input to the PAL, where it is used as
the identity to which the MTM is bound, i.e., under which the MTM operates
application-specific.

4.3 Cryptographic Primitives

Although the MTM PALs have access to the platform TPM and its cryp-
tographic functions, those functions are either to restrictive (e.g., created
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wrapped keys should be bound just to the MTM, but not additionally to
the platform TPM) or are too inflexible (e.g., no symmetric cryptographic
primitives) for the architecture. For these reasons, the MTM PALs include
a small software library that provides such cryptographic primitives to the
MTM.

Asymmetric Schemes

The asymmetric schemes provided for both encryption and signing are
PKCS#1 v1.5 and v2.1 as defined in [57]. In particular RSAES-PKCS1-V1_5
and RSA with Optimal Asymmetric Encryption Padding (RSAES-OAEP)
are available as encryption schemes, while RSASSA-PKCS1-V1_5 and RSA
with Probabilistic Signature Scheme (RSASSA-PSS) are available as signing
schemes with appendix.

Symmetric Scheme and Padding

The only provided symmetric scheme is AES [77] with a 128 bits key-length
and in Cipher-Block Chaining (CBC) mode [78]. If the input length does
not equal a multiple of the block length, padding is required. The library
implements an unambiguous padding mechanism as specified in [49, p. 27].

Hash Functions

The sole hash function provided by the library is SHA-1 (Secure Hash
Algorithm [34, 79]).

Message Authentication Code

The only Message Authentication Code implemented in the library is the
Keyed-Hash Message Authentication Code (HMAC) [51] based on SHA-1.

Key Derivation

Key derivation is achieved using a Key Derivation Function (KDF) as
specified e.g., in [80] or [58, 66]. In this implementation the recommendations
of RFC2898 [58] are adhered to, i.e., using HMAC as the Pseudorandom
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Figure 4.4: High-level view of the bootstrapping of a Trust Domain

Function (PRF) and PBKDF2 as derivation function. The used passwords
for KDFs in this implementation are throughout AES-128 keys and thus the
key length is bigger than half of the block-size of the used hash function (160
bits for SHA-1) and thus fulfills the recommended minimum key length for
secure KDFs.

4.4 Trust Domain Bootstrapping

As described earlier in Section 4.1, the MTM PAL set contains special PALs
that do not implement MTM functionality, but necessary mechanisms like
bootstrapping a particular Trust Domain on a platform. In this section this
bootstrapping process is explained in detail.
The PALs that belong to the Trust Domain of a particular Trusted Third
Party share a secret key, denoted as KCommon. This key is set up for each TD
by the bootstrapping PAL. The architecture design makes use of the sealing
capabilities of the platform TPM and the special role of PCR17 during late-
launch in order to guarantee the confidentiality, integrity, and authenticity of
this shared keyKCommon. This means, that only the MTM PALs operating in
the correct TD are able to access this key and that they have the means to
ensure the authenticity and integrity of this key.
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Figure 4.4 gives an overview of the bootstrap PAL internals. The newly
created KCommon is sealed once for each MTM PAL selected by the SLB hash
array. The resulting seals and the wrapped sealing key are returned to the
legacy environment for use by the applications. Moreover, the bootstrap PAL
creates a central data structure that holds the version information for each
application-specific MTM in this TD. This data is protected by a key derived
from KCommon and is also returned to the legacy environment for persistent
storage.
The exact mechanisms implemented for the creation of the shared key and
for the protection of the MTM state version information are explained in the
following.
The sealing of KCommon is illustrated in Figure 4.5. The PAL requires certain
inputs: a) an array of hashes, each identifying an MTM SLB that operates
in this domain; b) a signature of this array by the Trusted Third Party of
the Trust Domain; c) the public key of the same Trusted Third Party; and
d) optionally a signature of the TTP public key by the vendor of the MTM
SLBs.
The bootstrap PAL first verifies the signature of the TTP for the hash-array
based on the public key of the TTP. It further verifies the authenticity of
the TTP public key based on a signature of the same by the vendor and the
vendor public key, that is hardcoded in the PAL (and is thus also part of
the PCR17 value of the Setup SLB). This second verification is optional in
order to enable a more open architecture, since TTPs are not required to
be authenticated by the vendor. Although the vendor signature mechanism
provides the highest assurance, it is also restrictive, because all TTPs have to
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securely request the signature for their public key from the vendor. Hence,
the vendor would be in absolute control of who is able to establish a TD.
Alternative approaches for bootstrapping trust could be based on a secure
user interface that shows, for instance, the fingerprint of the TTP public key
whereby the user can verify this fingerprint manually against the correct value
and abort if necessary. The setup could also be based on a secure remote
attestation of the bootstrap PAL results.
Afterwards, PCR17 is extended with the SHA-1 hash of the TTP public
key. The hash of the public key identifies the Trusted Third Party and
thus the Trust Domain. The PAL then leverages the platform TPM to
create a wrapped RSA storage key as child of the TPM SRK. A special
information field DigestAtCreation (DaC) in the key structure, that indicates
the composite value of selected PCRs at the time the key was created, is
used to store the PCR17 value at the creation time. Thus, a verifier with
knowledge of the hash of the Setup SLB and (the hash of) the TTP public
key is able to verify that this key was actually created by the bootstrapping
PAL as part of a Flicker session and that it is dedicated for the Trust Domain
of the particular TTP.
KCommon is an AES-128 key. It is sealed once for each MTM SLB with the
created TPM storage key in order to protect its confidentiality and to further
guarantee the authenticated access to it solely by the selected MTM SLBs
of this Trust Domain. This authenticated access is accomplished through
binding of the seals to the PCR17 values of the respective SLBs extended by
the TTP public key hash (based on the DigestAtRelease (DaR) information
of the sealed data structure). Those MTM SLB hashes are provided to the
Setup as the hash-array in the input. For the same reason as for the wrapped
key, the DigestAtCreation information of the seals is set to the PCR17 value
at sealing time.
Figure 4.6 depicts the protection of the MTM state version information
for the currently bootstrapping Trust Domain. The PAL derives a special
key KV ersion from KCommon. The label used for the derivation is version.
The derived key is then used for a symmetric encryption of the MTM state
information for this Trust Domain.
The state version information is a special data structure to maintain the
versions of all MTMs in one TD. This data structure requires a protected
and dedicated counter in the TPM as a reference counter. Because of the
restriction that only one TPMmonotonic counter can be incremented (possibly
multiple times) between two system reboots and thus prohibiting more than
one active TD between reboots, we opted for a counter deployed in the TPM
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NVM. Since this memory is not maintained by the TPM as a monotonic
counter, but simply as memory region, our architecture has to implement
the necessary steps to control access to this memory and to implement the
monotonic counter functionality in the SL code, using the provided memory.
The index of the TPM NVM space allocated for the counter is stored in the
state version information.
Based on the reference counter and the state version information, it is possible
to determine the freshness of an MTM state and, moreover, these information
are required to compute the encryption keys for MTM states.
We elaborate in Section 4.6 in more detail on how we control access to the
reference counter and on how our architecture implements replay prevention
for MTM states.
In total, the bootstrapping PAL returns the wrapped storage key, the seals of
KCommon, and the encrypted state version information to the legacy execution
environment, where they are persistently stored for further use by the MTM
PALs.

4.5 Common Key Extraction

Except the bootstrapping PAL, every MTM PAL selected by the TTP should
be able to access the shared key for this specific TTP Trust Domain, namely
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the KCommon created during the bootstrapping of the TD. This shared key
is the root key used to derive different dedicated keys, e.g., an application-
specific key or an encryption key for the MTM state version information of
the respective TD.
KCommon was sealed by the bootstrapping PAL and hence has to be unsealed
by the other MTM PALs before usage. The common procedure for the shared
key extraction, that includes ensuring the authenticity and integrity of the
key, is illustrated in Figure 4.7 and explained in the following.
Each application that initiates a late-launched MTM execution has to provide
a certain set of inputs, namely the wrapped storage key created by the
bootstrapping PAL for the Trust Domain of the application, the sealed
KCommon of this MTM PAL, and a hash of the public key of the TTP of
the TD the application executes in. Further, the MTM PAL receives the
aggregate hash of the application from the Flicker kernel module.
First, each MTM PAL extends the PCR17 with the hash of the received
public key hash. Thus, the PCR17 value corresponds to the measurement
of the executing MTM SLB extended with the public key hash and hence
identifies the MTM PAL and the Trust Domain for the MTM execution.
Next, the PAL verifies the authenticity of the provided storage key and sealed
KCommon based on the DigestAtCreation (DaC) value of both and on the
hardcoded hash value of the trusted bootstrap SLB. If the hardcoded value
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equals the DaC value with only PCR17 being selected, the storage key and
the sealed AES key were created by the correct bootstrapping PAL and can
be trusted. Because the hash value is hardcoded into the code of each MTM
PAL, it is part of the PCR17 measurement of each MTM SLB.
The integrity of the storage key and the sealed key are verified by the TPM
at load and unsealing time, respectively. The unsealing of KCommon is only
successful if the PCR17 value corresponds to the DigestAtRelease (DaR) of
the sealed key, i.e., both the measurement of the MTM SLB and the public
key hash must correspond to the values used at creation time during the
bootstrapping.
After the successful authentication of the storage key and of the seal, the
MTM PAL unseals the shared key by means of the TPM and the storage key.
The unsealed key is common for all MTMs in this TD and is available for
further usage by the MTM PAL on a domain wide level.
Additionally, an application-specific key KApp is derived from KCommon, based
on the aggregate application hash. This derived key is unique for a specific
application in a specific Trust Domain.
In the next sections, a successful extraction of KCommon and derivation of
KApp is assumed and thus these keys are supposed to be available for the
functions described.

4.6 MTM State Integrity and Versioning

In this section, the details of the state versioning are explained. The basic
idea for the proposed solution are virtual monotonic counters using a TPM as
described in [97]. In this approach a virtual counter is maintained for every
instantiated MTM and freshness of the MTM states is verified based on these
counters.
Figure 4.8 depicts the details of how the encryption key for MTM states, called
KState, is derived and the role of the virtual counters in this context. First,
KV ersion is derived from KCommon and is used to decrypt the state version
information for this Trust Domain. The state version information consists of
a limited number of virtual counters, e.g., three 32-bit counters, which could
be encrypted in exactly one block with AES-128 (4 bytes are reserved for the
TPM NVM index of the reference counter). The maximum counter value is
set to 231, because the most significant bit is used to indicate if the counter is
assigned or free. Every instantiated MTM, i.e., MTM state, is tagged with a
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domain-unique ID during the instantiation and this ID forms the index of the
virtual counter assigned to this MTM. The counter ID and the corresponding
virtual counter value are used in conjunction with the application-specific
key KApp to derive the latest key KState for this application’s MTM state.
Hence, KState changes with each update of the MTM state, thus changes
to the state file are hidden. This further provides indirect means to verify
the state freshness, because an incorrect counter ID or value results in an
erroneous state decryption and thus in failed sanity checks of the state.
As proposed in [97], the freshness of the virtual counters is verified based on
a physical monotonic reference counter, here based on the TPM NVM and
monotonic counter functionality implemented in the PALs. The sum of the
virtual counters and the reference counter are kept in synchronisation, and
thus, if the sum and the reference counter value correspond to each other, the
freshness of the virtual counters is assured, provided the virtual counters are
integrity protected.
The TPM_DefineSpace command, for creating a new NVM space inside
the TPM, offers the possibility to set a fine grained access control for the
newly created space. For instance, the read and write access can be bound
to selected PCR values, the locality, and the entity (i.e., either the owner
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or any other entity with knowledge of the correct authorisation value). In
our implementation, different PALs require access to the NVM in order to
read and write the counter value, thus prohibiting the binding to a specific
PCR17 value. Therefore, we restrict read and write operations to the NVM
space based on the locality, here locality 3, and a 20 bytes authorisation value
derived from Kversion and the string “counter”. The authorisation value is
hence only available to the PALs that are able to unseal KCommon. KV ersion
was chosen as the derivation key, because it is domain specific just like the
reference counter.
An approach based on TPM monotonic counters would require a similar
setup, because monotonic counters require a particular authorisation value for
incrementation (set during counter creation). However, reading the counter
does not require any authorisation. In contrast to the NVM based approach,
in which the counter functionality is implemented in the PAL and the TPM
provides solely a secure non-volatile storage location, TPMmonotonic counters
are maintained by the TPM and no additional counter functionality, except
the necessary TPM commands, is required in the PAL.
The maximum number of possible TDs is limited by the maximum number of
reference counters that can be created in the TPM NVM, which is on most
contemporary TPMs very scarce. However, the number of MTMs in each
domain is theoretically unlimited.
In Figure 4.8 only a one-level deep hierarchy of virtual counters is illustrated,
but further levels can easily be achieved with a mechanism similar to Merkle
hash trees [43]. Virtual monotonic counters based on Merkle hash trees, as
presented in [97], have already been shown to be suitable to establish storage
with forking and replay detection [118]. In this tree-like counter data structure,
only the leaves are dedicated virtual counters, while the intermediate and
root counters contain the sum of their children. To verify the freshness of a
specific leaf counter, one simply traverses the tree up to the root and checks
on every intermediate node if the parent counter value equals the sum of its
children, whereby the NVM reference counter is seen as the parent of the
root node. Crucial for this solution is that every node in the tree is integrity
protected in order to prevent the reallocation of counter values.

4.7 MTM State Instantiation

An application, that wishes to use an MTM as its credential platform, is
required to first instantiate an MTM state that is specifically bound to the
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application. The process of how an application creates an MTM state via an
PAL, that is dedicated to this purpose, is illustrated in Figure 4.9.
The application has to provide the MTM state version information for its
Trust Domain. This information was created by the bootstrapping PAL and
is encrypted with KV ersion, which is derived from KCommon. The PAL for
the state instantiation assigns a virtual counter to the new state, Further,
this counter is incremented by one. Thus, even if the identical application
releases its MTM and creates a new state with the identical counter assigned,
no replay attack is feasible.
Next, the PAL creates a new MTM state for the application and appends
information for the integrity validation, i.e., a hash of the state. The state
plus its integrity information is then symmetrically encrypted with KState,
that is derived from the application-specific key KApp together with the new
counter value and counter ID of the state. Thus, the state information is
application- and domain-specific bound. The state is tagged with its plaintext
virtual counter ID.
The state is returned to the application, which then is able to issue MTM
commands on its specific MTM state.
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A particular problem with the state creation for software-based MTMs is
the secure provisioning of certain keys to the MTM. Normally, each TPM
or MTM is shipped out by the vendors with a pre-installed Endorsement
Key (EK), that identifies the module and hence the platform. The EK is
used to enrol new identities, i.e., AIKs, on the platform, which are used for
attestation purposes instead of the EK., because of privacy concerns.
Our implementations employs an MRTM for which we already possess a
code-base [35] that meets the requirements for a deployment in execution
environments with constraint resources, like the security extensions of con-
temporary System-on-Chip architectures or the late-launched environments
of modern CPUs. The MTM specifications identify use-cases in which the
enrolment of additional identities is not required and in which the EK for
MRTMs is declared as optional, as long as one AIK, the SRK, and a Root
Verification Authority Information (RVAI) (that defines the root of the verifi-
cation key chain for RIM certificates) are installed during manufacturing of
the MTM. The size optimisations for our MRTM include the abandonment
of an EK.
Pre-installation of the mandatory credentials implies that they are already
deployed in the MTM prior to shipment of the MTM to the user. In our
architecture, however, the MTM state is created on the user platform, thus
prohibiting a feasible pre-installation. In our architecture exist different
approaches to this problem. For instance, the required credentials, like the
AIK, are created in the context of the state instantiation. In order to be
useful, the AIK has to be certified by a privacy CA. Normally, the privacy CA
verifies the authenticity and the origin of an AIK by means of the AIK’s EK.
In absence of such an EK, a new provisioning protocol is required. Such a
protocol could leverage the platform’s TPM EK or, in case of our architecture,
also the TPM’s binding capabilities with respect to the late-launched SLB’s
PCR17 value. The provisioning has to take into account that the AIK is
bound to a specific application on the platform and this application’s identity
has to be part of the certification. For now, our architecture creates a new
AIK for each new MTM state and we refer to future work for the design of a
provisioning protocol for the AIK or the AIKs certificate.

4.8 MTM Execution

Any application that has successfully created its own MTM state is able to
use its MTM to store and use its credentials. While the MTM state forms
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Figure 4.10: Execution of an application-specific MTM

the application-specific data, the MTM functionality is implemented in one
or several PALs. Each such PAL implements a different subset of the MTM
commands from the TPM and MTM specifications. It is the task of an
application-side library to load the correct PAL for the command that shall
be executed.
Figure 4.10 illustrates the general workflow of an MTM PAL execution. Beside
the application-specific MTM state information and the MTM command
inputs, the application has to provide the usual input for the common key
extraction and derivations as explained in Section 4.5. The workflow consists
of three major steps (after theKCommon andKApp have been extracted/derived
as illustrated in Figure 4.7 on page 47): 1) the decryption and validation of
the received MTM state; 2) the MTM operation on this state; 3) the update
of the state version information and re-encryption of the updated MTM state.
Figure 4.11 depicts the details the first major step, the decryption and
verification of the input MTM state. The key KState is derived as explained
in the preceding Section 4.6. The key KV ersion is further kept in memory
for later usage. KState is then used to decrypt the state and its appended
integrity information. The decrypted state is afterwards checked for sanity. If
the decrypted state is sane, this implies that it is fresh as well, since the used
KState is derived from the virtual counter information for the state version.
The decrypted state version information for this TD is kept in memory as
well for a later usage.
After the successful decryption of the MTM state, the received MTM command
is executed on this state. The MTM results of this execution are returned to
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the application.
As an effect of the MTM operation, the MTM state for this application has
been modified and this updated state has to be re-encrypted before it can be
returned. Figure 4.12 illustrates this state version update and re-encryption.
Essentially, this step is the reversal of the decryption step, except that the
state version information are updated, i.e., the virtual counter value for the
current state (and all virtual counters depending on it) are incremented as well
as the reference counter. A new key KState is derived from the updated version
information plus KApp. The updated version information are re-encrypted
with the in-memory kept KV ersion. The encrypted state version information
and the MTM state, encrypted with the new KState, are returned to the
application.
Before returning to the legacy environment, the MTM PAL extends PCR17
with the hashes of the MTM input and output, as well as with the application
ID. Furthermore, PCR17 is extended with a well-known value, that marks the
end of the Flicker session and enables remote parties to distinguish between
measurements taken in the secure environment and measurements taken
afterwards in the untrusted legacy execution environment. The application
is thus able to attest, via the platform TPM, the exact MTM SLB, its
parameters, and the application it belongs to. Moreover, such an attestation,
if successful, confirms the integrity of the MTM result to the remote verifier.
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5

Security Analysis

In this chapter, the security properties of the proposed architecture are
analysed. A special focus is put on the mechanism by which the architecture
achieves the link between applications and the secure execution environment.

5.1 Assumptions

Certain assumptions regarding the cryptographic primitives, the DRTM
technology, the TPM tamper-resistance, and the utilised MTM PALs have to
be established in order to allow for a reasonable analysis of the architecture.
First, the cryptographic primitives are assumed to be secure against cryptan-
alytic attacks. In particular the encryption and digital signing algorithms can
not be broken by an attacker that has no knowledge of the secret (private) key.
Based on current publications on cryptanalysis of AES and RSA the assumed
secure thresholds are 128 bits for AES and 1024 bits for RSA [40, 22, 21, 23, 61].
SHA-1 is used extensively in this architecture as it is the only supported
hash algorithm by the current TPM specification. Although there have been
recent advances towards breaking SHA-1 [120, 24, 25], it is assumed to be
cryptographically secure in the context of this thesis.
The second assumption concerns the DRTM security. Recently an attack was
published that circumvents the DRTM security features of Intel’s TXT during
a late-launch of the Xen hypervisor [123]. The attack is based on infecting
the System Management Mode (SMM) handler of the platform, which than
bypasses all security measures of the TXT late-launch. This is possible, since
the SMM at the highest security level on the Intel platform and therefore
remains unmeasured and unmodified by the DRTM. A solution proposed by
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Intel, called SMM Transfer Module (STM), is to sandbox the SMM in order to
prevent it from accessing protected resources [44, pp. 311-315]. Although STM
is not available yet, in this thesis DRTM is assumed to provide the specified
security features, which are fundamental for the proposed architecture, and
SMM based attacks are not considered.
We further assume that the TPM chip is tamper-resistant as declared by the
specifications. Recently, Christopher Tarnovsky has presented a successful
attack on an Infineon TPM that disclosed secret keys protected by the
chip [110]1. The attack required a very high level of expertise and also special-
purpose hardware, but it confirmed that TPM chips are not resistant against
sophisticated hardware-based attacks. For this thesis, the security of TPMs
as described in the TCG specifications is assumed, i.e., data stored within the
TPM is considered as secrecy and integrity protected. Further, it is assumed
that the TPM chip adheres to the specifications and does not violate them
in a way that jeopardises the security of the architecture. This assumption
is motivated by the fact that recent investigations revealed that some TPM
models are not specification compliant [91].
The last assumption concerns the software security of the MTM PALs. The
software-based MTM (including all required libraries) comprises roughly
10,000 lines of code. Considering this amount of code lines and the simplifica-
tions of the execution environment, e.g., no virtual memory, no peripheral
devices except the TPM, and no scheduling, we assume that the unmodified
deployed MTM PALs contain safe code. We argue that under this circum-
stances the code safety could be proven with formal methods or through code
inspection. By definition, the Trusted Third Party (TTP) only signs hashes
of these safe and trustworthy MTM SLBs.

5.2 Attacker Model

For the attacker we assume the same model as in the Flicker infrastructure
and TPM specifications. The goal of the attacker is to disclose application’s
credentials either directly or by gaining access to secret keys that protect the
credentials. He mounts attacks at runtime of the MTM PALs as well as at a
time when the architecture is idle, i.e., against the sealed storage. Thereby,
the attacks are targeted against the DRTM mechanism directly, but more
commonly against the information protected by the MTM.

1The official slides are unfortunately extremely scarce regarding information, but more
details can be found on several news websites
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In terms of software-based attacks, the attacker is able to execute code as
either user applications (ring 3), or with the highest privileges (ring 0) in the
system, or as a separate late-launched PAL (ring -1). The attack code can run
all operations on the target platform or make use of the resources of remote
processes. Moreover, this includes that the attacker might compromise any
application on the platform that makes use of an application-specific MTM
as well as the OS.
Regarding hardware attacks, the attacker has physical access to the target
platform and is able to perform simple hardware-based attacks (“open case
attacks”), such as attaching malicious DMA devices or other attacks involving
only commodity hardware tools and no special expertise.
This entails, that he does not have sophisticated tools like electron microscopes
or other special probes which enable him to mount sophisticated hardware-
based attacks. DRTM does not provide, by specification, resistance against
this type of attacks and an attacker model that allows these, basically renders
DRTM and thus the here proposed architecture ineffective.
Furthermore, certain TPM commands require authorisation, e.g., defining
a new NVM space requires the owner authorisation or the usage of a TPM
key, including the SRK, requires the key-specific authorisation value. In our
architecture, unless explicitly stated different, all authorisation values are
implicitly set to a well-known value, like 20 nulls. The attacker is thus able to
issue these commands, because he has knowledge of these well-known values.
However, it will be shown that this enables him only to mount denial-of-service
attacks, e.g., changing the well-known authorisation values to secret ones or
to consume all TPM resources. He will, however, not be able to disclose or
misuse the application-specific MTM credentials based on this knowledge, as
we will demonstrate in the following attack scenarios.
Although remote attestation plays an important role for the security that can
be provided by our architecture, we exclude, for the sake of simplicity, attacks
on network communications from this analysis. A mighty network attacker,
e.g., Dolev-Yao [31], is able to mount attacks against the communication
between the application and the remote party, but a thorough analysis would
exceed the feasible boundaries for this thesis and we assume the existence of
secure channel between these two parties.
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5.3 Attack Scenarios

In the following, possible attacks scenarios based on the above described
attacker model are explained and analysed. The scenarios are categorised
into hardware-based and software-based attacks.

5.3.1 Hardware-based Attacks

The first attack scenarios that we analyze are hardware-based attacks [44,
Chapters 17 & 20; pp. 131-132]. As explained in the attacker model, the
attacker has physical access to the machine and can mount simple attacks.
In this section, we base the protection against the examined attack vectors
on the security features of DRTM. We analyse them from a general point of
view that is not limited to AMD’s SVM alone, but also includes Intel’s TXT.
Hardware debuggers and malicious DMA devices: Two already men-
tioned scenarios are the attachment of a hardware debugger in order to read
sensitive information directly from the hardware or a malicious DMA device
that gains access to memory regions containing secret information. Both of
these scenarios are countered by the late-launch implementations of Intel and
AMD. As explained in Section 2.3, on AMD the SKINIT instruction disables
all hardware debugging features, thus preventing an attacker from disclosing
secrets with a hardware debugger. Moreover, it disables DMA access to the
SLB region via the DEV vector. Similar measure that provide the same
security benefits are taken on Intel platforms for the SENTER instruction.
Reset attack: Another scenario is based on the system reset. The attacker
issues a system reset while the SL executes and boots directly afterwards
attack code. Considering that the physical memory may sustain its content for
several seconds after a power loss, it is possible for an attacker to read secret
information from the memory after the reset. Intel’s TXT counteracts this
based on information stored in the persistent memory of the input/output
controller hub (ICH, commonly known as “Southbridge”) and the TPM.
This approach is necessary, since the CPU and the memory controller hub
(MCH, commonly known as “Northbridge”) lose all information regarding the
protection during reset. Both the TPM and the Northbridge are mandatory
parts of the TCB on modern platforms. When booting after a system reset,
the bootstrap processor checks, before the BIOS is entered, if previously a
secure environment was executing and, if so, it executes a special module that
cleans the memory regions that have been declared protected and thus all
sensitive information.
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ACPI attack: A similar attack is based on the S2/S3/S4 sleep states specified
in the Advanced Configuration and Power Interface (ACPI). Events that are
triggered during these states may cause some devices to perform a reset while
other devices do not reset. For example, in S3 the CPU is reset, while the
memory is still supplied with power, i.e., while secret information is still in
memory, the CPU loses track of which memory regions have to be protected.
In Intel’s solution the responsibility is partly shifted to the code in the secure
environment, which has to react to these events. It either could ignore them
and prohibit the CPU to reset or it could take care of the necessary steps to
protect the secrets, exit the secure environment, and allow the sleep state. If
the code in the secure environment does not catch these events, while being
active, the events cause the chipset to assume the above described situation
in which sensitive information is left unprotected in the memory. It thus
triggers a complete platform reset during which the secrets in memory are
erased.
LPC bus attack: In a different scenario, the attacker tries to sniff secret
information from the buses that interconnect the CPU, memory, and TPM.
Since only simple attacks are allowed, the only bus left for sniffing is the Low
Pin Count (LPC) bus, that connects the Southbridge with the TPM. The
LPC is a slow bus and can be eavesdrop with commodity, low-cost equipment
and little expertise. To counteract this attack, it is possible to establish a
secure channel to the TPM, called transport session in the TCG specifications.
The LPC is considered to be a network connection between two platforms and
the transport session provides a protocol to setup a secure channel between
the TPM and the PAL.
Attacks against the applications/OS: Hardware-based attacks that do
not target the late-launched secure environment itself, but the applications
or OS, could be for example hardware debuggers in order to reveal secret
information kept in memory. In our architecture we prevent this type of
attacks by not storing sensitive information in the application and rather
keeping it in the application-specific MTM. Thus, the sensitive information is
protected at runtime by the security capabilities of the secure environment
and at passive time by the sealed storage capabilities of the TPM.
However, there is an exceptional scenario, namely the sealed storage use-case
for applications. An application, that wants to seal information before storing
them on the persistent storage, is required to encrypt these information
themselves (e.g., AES) and then use their MTM to seal the used encryption
key. This procedure is necessary due to the fact that the MTM only supports
asymmetric sealing keys without any chaining, thus a very limited plaintext
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size. Moreover, even with chaining, the input buffer size of the secure
environment sets a size limit that is most likely smaller than the size of
the sensible information. The same procedure is described by the TPM
specifications for users that want to make use of the platform TPM’s sealing
function. Our architecture is thus in this respect on the same security level
than the TPM, except that our MTMs are application-specific and not shared.
Excluded advanced attacks: To conclude this section, a few advanced
hardware-based attacks are listed. Again, this attacks are excluded from the
attack vectors that the attacker model in this analyse is capable of, since they
are explicitly excluded from the DRTM protection capabilities by the TCG
specifications.
One thinkable attack would be the faking of the special bus-cycles issued by
the CPU at locality 4 [89]. The attacker inserts these bus-cycles onto the
LPC bus, thus causing the TPM to reset the dynamic PCRs. The attacker
is than able to simulate a trusted PAL execution although malicious code
executed. This attack requires special equipment and a certain expertise.
Other bus-based attacks could target the connection between the CPU and
the Northbridge, i.e., the Front Side Bus, or the connection between memory
and Northbridge, i.e., the memory bus. On both buses the attacker could
intercept secret information. But both of them are high-speed buses and
eavesdropping them requires a high expertise and expensive, special-purpose
hardware tools.
Also an scenario involving a rogue CPU is possible. The rogue CPU is modified
so that it reveals sensitive information to the attacker. If the BSP is not the
rogue CPU but one of the application processors, the attack might still be
successful if the rogue AP is activated by the SL (after certain preparations)
in order to enable multiprocessing. But this scenario requires the attacker to
obtain or build a rogue CPU and thus requires a very high level of expertise
and tool support.

5.3.2 Software-based Attacks

The second type of attacks that we analyse are software-based attacks. In
this scenarios the attacker tries to gain secret information by mounting
software-based attacks against the secure execution environment, our deployed
architecture, the system-level software, or the applications. The attack code
can either execute as normal application with ring 3 privileges, with system
level ring 0 privileges, or as PAL in a Flicker session.
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Attacks against the secure environment: These attacks require that
the malicious code runs in parallel or concurrent to the secure environment.
But these prerequisites are explicitly prevented by the DRTM design. A
parallel execution is not possible, because the application processors must be
halted previous to the late-launch and the SL executes on the only remaining
processor, the BSP. In our architecture, the BSP stays the sole active CPU
during the PAL execution and the halted applications processors are only
re-activated after the resumption of the legacy OS, i.e., when the credentials
and keys are sealed again and any secret information is cleaned from the
memory.
A concurrent execution is prevented by disabling the global interrupts flag
during late-launch. The SL executes therefore atomically and no malicious
code can regain control during the SL execution.
Malicious code that executes as PAL in separate Flicker sessions poses no
threat to other sessions, since the sessions are mutually exclusive and the
strong isolation properties of DRTM and TPM, i.e., the PAL measurement
mechanism and sealing bound to this measurements, prevent that any in-
formation from one session can leak to another (or the legacy OS, for that
matter) as long as the SLs clean their memory before exiting.
Attacks against the architecture: In this scenario, we analyse attacks
targeted against the implementation of our architecture, that means the data
deployed by our architecture on the persistent storage. These data comprises
the SLBs and all information that are required as input parameters by the
PALs, like the information supplied by the TTP or the wrapped/sealed keys.
The information about the MTM state versions are analysed separately in
Section 5.3.4.
The essential capabilities of the TPM and DRTM that are used to establish
trust among the PALs and keys in our architecture are 1) the integrity
protected information in TPM wrapped keys and seals about their respective
origin (DigestAtCreation); 2) the possibility to bind keys and seals to a
specific platform state (DigestAtRelease); 3) the unique PCR17 values for
SLBs measured during late-launch; 4) the secure attestation of PCR values
to a remote party.
Figure 5.1 illustrates how these capabilities are applied in our architecture in
order to resist attacks based on malicious PALs and TTP input. The three
components that exchange information in the architecture are the Trusted
Third Party of the Trust Domain, in which the MTM should operate, the
Setup PAL that bootstraps the Trust Domain, and the MTM PALs that
implement the MTM functionality and state instantiation. Guaranteeing
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Figure 5.1: PAL trust establishment within the architecture

the basic trustworthiness of the PALs is the fundamental requirement for
providing the necessary trusted resources for a software-based Mobile Trusted
Module.
The following list gives an overview of the possible attack scenarios and how
our architecture utilises the above mentioned capabilities to counter them:

• Tampered TTP input: The attacker is able to modify the input to
the Setup PAL and exchange the public key of the TTP with his own.
This is possible, because the vendor signature of the TTP public key is
optional for reasons of openness. However, he does not gain any secret
information, but solely exchanged the identifier of the TTP and thus
the TD. The consequences could be denial of service at most, since
the wrong TD would be detected by a remote attestation of the MTM
results.

• Malicious Setup PAL: The attacker modifies the Setup PAL such
that it behaves maliciously, e.g., it uses a well-known value as KCommon
so that the attacker is able to derive all keys and disclose the application-
credentials. Hereby, the modified Setup PAL uses the original input from
the TTP. However, the MTM PALs expect a wrapped storage key of the
TPM that has been used to seal KCommon. Wrapped keys can provide
information about the PCRs at creation time (DigestAtCreation). Here
in particular the DRTM measurement of the Setup SLB extended with
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the hash of the TTP public key is expected as DaC in PCR17. Since
this specific value can only be achieved through the late-launch of the
unmodified Setup SLB, the MTM PALs are able to detect when the
storage key was not created by an unmodified Setup PAL (or if the
storage key and TTP public key do not belong to the same TD). If the
check fails, they consequently abort the potentially harmful operation.
If the Setup PAL was modified after it bootstrapped the TD, and hence
the correct wrapped storage key is already created, the modified version
is able to use this storage key to seal another, insecure KCommon. In
this case the MTM PALs accept the DaC of the storage key, but they
detect the untrusted DaC value of the sealed KCommon. Again, this is
based on the fact, that the correct DaC of the seal can only be achieved
through a late-launch of the unmodified Setup SLB with the correct
TTP public key. If the authenticity and trustworthiness of the seal
can not be verified, the MTM PALs abort the operation before any
information can leak.
The same argumentation also holds, if the attacker additionally modifies
the input from the TTP to the Setup PAL, since the crucial point is
the detectable modification of the Setup SLB. Software is not able to
forge these specific PCR17 values, due to the PCR extension mechanism
(p. 6) and the fact that only a late-launch can reset PCR17 (p. 14).
Thus, PCR17 attests in a trustworthy manner the exact identity of the
software executing in the secure environment.

• Modified MTM PAL: The MTM PALs are also available to the
attacker and so he is able to modify them such that they leak sensible
information to him. In this scenario he leaves the Setup SLB and TTP
input unchanged. The modified MTM PALs are able to load and use
the wrapped storage key. However, they are not able to unseal KCommon.
The seal is bound to the value of PCR17 in such a way that only the
MTM PALs that were selected by the TTP (MTM SLB Hashes) are
able to unseal the common key. This is enforced by the TPM unsealing
function (DigestAtRelease) and the measurement of the MTM SLBs
into PCR17 by DRTM.
If an attacker additionally modifies the input from the TTP such that
he provides the MTM SLB hashes of his modified versions to the Setup,
signed them with his own key pair, and omits the vendor signature,
the malicious MTM PALs would operate successfully together with
the correct Setup PAL. However, when the credentials are used in
conjunction with a remote party, this party would detect the modified
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TTP public key during the remote attestation.

• Modified Setup and MTM PALs: In this scenario, the attacker
modifies the Setup PAL and the MTM PALs, but not (necessarily) the
TTP input. The modified Setup PAL ignores the TTP input and creates
a storage key, which it uses to seal a (well-known) key as KCommon but
without any selected PCRs for the DaR of the seal. The modified
MTM PALs ignore the DaC of the storage key and seal and are able
to unseal the KCommon. Although, in this scenario malicious PALs
are operating successfully and with the correct public key of the TD
TTP, the malicious MTM PALs would be detected by the remote party,
because their measurement is part of PCR17 which in turn is the basis
for the remote attestation. The applications are hence able to abort
their operations. Thus, the attacker can disclose only credentials that
are rejected by the remote party.

• Parallel malicious installation: The remote attestation is an essen-
tial security factor in the architecture in order to detect modified PALs
and inputs before the credentials are actually used between the appli-
cation and a remote party. To achieve a successful remote attestation,
while still deceiving the application to use malicious code, the attacker
could install his malicious version of the architecture in parallel to the
trusted one. The applications operate on the modified version, thus
revealing the credentials, and the attacker’s goal is then to produce the
same, trustworthy attested output with the unmodified architecture as
he produced with his malicious version. But since he has no insights
into the isolated PAL executions and MTM states, the chances for this
attack to succeed are minuscule.

Attacks against the applications and OS: Besides the secure execution
environment and our architecture, an attacker could target the platform’s
applications and OS. In this respect the proposed architecture can not provide
a better level of protection than its building blocks Flicker and TPM. Both
of them provide a secure execution environment or shielded storage location
respectively, but also require OS involvement to some extent. Flicker provides
a kernel module through which applications write their inputs, read the
outputs, and select the SLB to execute. Similarly, the TPM is accessed
through drivers within the kernel and optionally through a software stack
running in user- and kernel-space. Our architecture requires additional
components of the kernel, namely IMA and the process management, for the
application identification.
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Although software-based attacks are not able to disclose any information
at runtime and the MTM states are sealed for secure storage, malware and
malicious code are able to misuse the application-specific MTMs or log, in
certain use cases, application-level secrets.
As an example for the latter case, consider the secure storage use case in which
an application wants to seal some data by encrypting it with a symmetric
key and than sealing this key with its MTM. In this case, malware could log
the symmetric key before it is sealed, because this operation is outside the
protection perimeter of the architecture. In this scenario neither Flicker nor
TPM would provide better protection, since in both cases the application had
to perform the same operation and give the symmetric key to a Flicker PAL
or the TPM as input via the OS.
Certain malware types, such as rootkits, are able to misuse credentials stored
in an application-specifc MTM by undermining the complete OS security.
Rootkits, for example, use operating system methods like hooking or replacing
parts of the OS in order to compromise the OS (also known as kernel-level
rootkits [48]) or exploit hardware features of the platform to bypass security
capabilities of the OS (hypervisor rootkits [55] or user-level rootkits [111]).
A disclosure of the credentials is, however, even for rootkits not possible,
because the OS is not part of the TCB of our architecture due to Flicker.
Some other attack scenarios on how a MTM could be misused by other
(malicious) software are also possible. For instance, if the IMA subsystem
of the kernel is compromised, the application ID acquired by the Flicker
kernel module is untrusted. The MTM execution and the MTM state are
hence bound to the untrusted value. E.g. if the acquired ID is constant
independently from the actually executing application, the MTM is not
application-specifically bound anymore, but global to all applications. In this
case, our architecture provides the same security level as Flicker, since the
link between applications and the secure environment is lost. The same result
could be achieved with a compromised Flicker kernel module that discards
the IMA measurements or with a compromised process management in the
kernel that provides false or incomplete information about the applications.
A further issue is the Time of Check to Time of Use problem. IMA measures
the executables and libraries at load-time. Thus, if malware compromises a
running process, this modification is not reflected in the measurement value.
Such a compromised application is nevertheless still able to use its specific
MTM. But the applications are not part of the TCB of their MTM and
although they can use their credentials, they are not able to access them
in unencrypted form. Thus, the compromised application is able to misuse
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Figure 5.2: Key-chain in the architecture

its credentials, but not disclose them. This mechanism is similar to TPMs,
where users can create and use keys on the module, but because the keys are
wrapped, the user will never see the private portion of their keys in plaintext.

5.3.3 Key-Chain

In this section we analyse the confidentiality of the secret keys that are
required for the MTM execution. Figure 5.2 depicts the relationships between
the individual keys. Because the keys are either created by the TPM, sealed
with a TPM key, or are derived from another key, they form a chain with
the TPM Storage Root Key (SRK) as anchor. Keys unshaded are publicly
available, while the shaded keys are protected such that they are only available
to the legitimate MTM PALs.
The TPM SRK is on top of the key chain and it is by specification protected
inside the TPM’s shielded memory. However, the SRK can be used by any
entity, i.e., user or application, that has knowledge of the SRK authorisation
value.
The wrapped storage key, created during the bootstrapping of a Trust Domain,
is created is a child of the SRK. Thus, the private portion of the wrapped
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key is never revealed in plaintext outside the TPM. The wrapped key is
used domain-specific and thus can not be bound to a specific platform state
via PCR17, since all MTM PALs in this domain require access to this key.
Consequently, this key can be loaded and used by any party on the platform.
The wrapped key is used to seal the secret key KCommon. The important step
that guarantees that only the legitimate MTM PALs of this domain have
access to the confidential KCommon is that the sealed KCommon is bound to the
specific PCR17 values of the unmodified MTM SLBs in the TD. Because the
late-launch of each SLB results in a different, specific PCR17 value, KCommon
is sealed once for every MTM PAL. Theoretically, the Setup PAL could create
one wrapped storage key for each MTM PAL, bind these keys via PCR17
to the MTM SLBs, and then seal KCommon once with every wrapped key.
Thus, the wrapped storage keys would not be usable by illegitimate entities.
However, the storage key creation is a very expensive operation, and the
increased costs in bootstrapping time and management of the additional keys
outweigh the increase in security. The attacker is in our architecture not
able to unseal KCommon, as argued earlier in Section 5.3.2. He is, however,
able to use the storage key to seal and unseal other data and thus to mount
cryptanalytic attacks against the key, like known-plaintext attack. But we
assume and argue that the RSA implementation of the TPM with 2048 bits
key-length is resistant against these attacks and that the costs of breaking one
TD are most likely higher than its reward. A different approach to increase
the security of the wrapped storage key would be to use a secure authorisation
value, e.g., 20 random bytes, to authenticate the usage of the key and prevent
unauthorised entities from doing so. However, the authentication value has
to be mediated securely to the MTM PALs and the wrapped storage key
is created to fulfil just this task. Thus, an authentication for the wrapped
storage key yields a circular dependency which is not feasible without to
implement a huge management overhead that again outweighs the benefits.
KCommon is used by the MTM PALs to derive other keys from it. First of
it all, KCommon is domain-specific and not bound to any specific application
in its domain. Therefore, the MTM uses KCommon to derive the encryption
key for the domain-wide MTM state version information from it. The string
used for the derivation is publicly known, namely “version”, but KCommon is
confidential and thus the derived key KV ersion is secret as well. If the attacker
is able to break KV ersion, he is able to decrypt the version information for this
domain and thus to replay old states by modifying the counter values. The
HMAC-SHA-1 based KDF, however, provides the security benefit, that he is
not able able to compute KCommon, which he requires to disclose credentials.
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The authorisation value required for access to the NVM space of the reference
counter, that is assigned to this Trust Domain, is derived from KV ersion
as previously explained in Section 4.6. An attacker with knowledge of the
authorisation value is, however, not able to compute KV ersion due to the
properties of HMAC-SHA-1, used for the derivation.
The second key derived fromKCommon isKApp, which is domain- and application-
specific. KApp is bound to the application via the application’s aggregate
hash used for its derivation. Again, since KCommon is secret, so is KApp.
KApp itself is never used in an encryption or authentication operation, but
serves as the secret key from which KState is derived, which is used for the
encryption of the MTM state and thus the secure storage of the credentials.
In addition to the domain and the application, KState is bound to the version
of the latest MTM state. It thus offers a more fine-grained security and
perfect forward secrecy, since an attacker might break the KState of one MTM
state and disclose the credentials of that version, but he is not able to break
a long-term secret like KApp or KCommon this way. Although the version
counter is secret as well in this derivation, it does not lower the need for
strong protection of KApp, since an attacker with knowledge of KApp is able
to easily brute force the very small value space of the version counter in order
to break the state encryption.
Concluding, we want to emphasise again the importance of KCommon in our
architecture. An attacker is only able to disclose credentials by breaking
keys, if he gains knowledge of KCommon or KApp. KState also provides him
this benefit, but solely for one specific state version, while KV ersion enables
him to replay old states. Bearing in mind, that KApp can only be computed
with knowledge of KCommon, this common key becomes the single point of
failure in the key hierarchy under the assumptions that the attacker is not
able to break the TPM and DRTM protections.

5.3.4 MTM State Replay Attacks

In this section we want to elaborate in more detail on the mechanics of how
our architecture prevents replay attacks of old MTM states.
The architectural design of the replay prevention is explained in detail in
Section 4.6 MTM State Integrity and Versioning. The key KV ersion is used to
protect the domain-specific version information, that are implemented as an
array of virtual counters. Each MTM in the domain is assigned one virtual
counter, that reflects the latest state version of its MTM. The virtual counter
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integrity is assured based on a monotonic NVM based reference counter and
the encryption of the version information. The virtual counters are used to
derive KState for the en-/decryption of the application-specific MTM states.
Under the assumption, that KCommon and hence the other derived keys are
unknown to the attacker and further under the assumption, that the operations
depicted in Figure 4.8 (p. 49) are protected by the Flicker session, the attacker
is only able to attack the information stored on the persistent storage, i.e., the
MTM state file and the version information, or the counter value stored in
the TPM NVM.
In the first scenario the attacker targets the MTM state file saved on persistent
storage. He modifies the state file and, since the data structure of the state is
known, the attacker knows the offsets of specific information in the state, so
that he is able to manipulate them specifically. The state file is encrypted
with AES-128 in CBC mode. This means, that the attacker can not determine
the new values of the changed data. This further entails, that he is not able to
successfully adapt the encrypted integrity value attached to the state. Thus,
the integrity check of the decrypted state fails and MTM execution aborts.
Each MTM state is tagged with an ID, that indicates the virtual counter
assigned, and this ID is attached in plaintext. Thus, the attacker is able
to easily change the ID. However, the KState derived in this case is always
incorrect and thus the decrypted state will fail the sanity and integrity checks.
The reason that the derived KState is incorrect is that the derivation takes the
counter value and the counter ID into account. Thus, even if the modified ID
points to a counter with the same value as the correct one, the changed ID
value will cause the derivation of an incorrect KState.
A similar detection of an attack occurs if the attacker targets the version
information. These are also encrypted with AES-128. The attacker knows the
offsets for the particular counter and the NVM space index of the reference
counter. He is thus able to modify specific counter values. The consequences,
however, are twofold. If the sum of the virtual counters in the modified
version does not equal the value of the referenced NVM counter, the version
information are considered untrusted and the MTM aborts execution. On the
other hand, if the sum and the counter equal to each other, there are again
two possible consequences depending on the changed value of the counter
assigned to the current MTM. If this value is incorrect, the derived KState
is wrong and the integrity check for the state fails. If the value, however,
is correct, the modifications to the version information remain undetected
during this session. The MTM executes normally and returns the updated,
modified version information. The attacker has not gained any information,
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but it is very likely that one or more of the other MTMs in this domain
are now non-functional, because of incorrect counter values in the modified
version information. Although this last case could be prevented through
additional integrity information of the version information, we argue that
this overhead is unnecessary, because this scenario is extremely improbable
and, more importantly, the attacker does not gain any information, but just
achieved a denial-of-service attack, which he can mount more easily, as he
has access to the state file.
The last element, that the attacker could target, is the NVM space of the
reference counter. Although, the space index of the TD is located within
the encrypted state version information, it is easy for an attacker to obtain
this index, because he can request a list of all defined NVM spaces and their
corresponding attributes from the TPM (without any authorisation) and
thus investigate which index belongs to the TD. Reading and writing to the
NVM, however, does require authorisation. TPM authentication values are
20 bytes long. In our architecture, the Setup PAL, which creates the space
for the TD reference counter, uses an HMAC-SHA-1 derivation of KV ersion
as authentication value. An attacker could consequently try to acquire the
KV ersion either by a cryptanalytic attack on the version information or by a
brute-force attack against the NVM space authentication. The former attack
is already excluded, because we assume the resistance of AES against this
type of attacks. The latter attack is infeasible for two reasons: first, the
key space to search through is sufficiently big (2160), and second, the TPM
implements “anti-hammering” methods, that block the TPM for a certain
time period if too many failed authentication attempts occurred within a
short time frame.
An attacker with knowledge of the owner authentication value, which is
well-known in our architecture, is able to delete and to redefine NVM spaces.
However, because our PALs expect to be able to read and write the NVM
space of the reference counter based on the derived authentication value,
which is unknown to the attacker, a redefined NVM space can have the same
index as before, but a different authentication value. Therefore, a redefinition
equals a space deletion and causes a denial of service, but does not provide
any attack vectors that may disclose credentials.
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5.4 MTM Roots of Trust

To conclude the security analysis, we analyse how our architecture meets the
required Roots of Trust (RTs) for a secure implementation of a software-based
MTM. To understand the meaning and importance of the RTs we first have to
elaborate a little bit on the definitions of resources in an MTM architecture.
The MTM specifications define different kind of resources available for MTM
implementations. The resources are distinguished by the way trust is placed
onto them or by their availability.
The RTs are also denoted as “Trusted Resources”, because their trustworthi-
ness is established solely on the surety by another entity. The second way
to establish trust in a generic instantiation of a resource is by measurement
through a reliable entity. These resources are therefore denoted as “Measured
Resources”.
In terms of availability, the specifications distinguish between dedicated and
allocated resources. The former ones are automatically available when the
platform powers up, e.g., hardware devices or processors. Dedicated resources
exist therefore by definition parallel to and isolated from each other. The
RTs are specified as dedicated resources. Allocated resources are functions,
that are created and maintained by dedicated or other allocated resources.
Each stand-alone trusted mobile platform is required have some dedicated
resources that can protect data from attacks.
Important for our architecture is the fact that the specifications states that a
dedicated RT can also be described as an allocated RT that has been measured
by a trusted building entity. Consequently, we are able to implement our
software-based MTM, if our platform provides dedicated resources that form
an RT and that are able to measure and vouch for allocated resources and
thus build other Roots of Trust.
Root of Trust for Enforcement (RTE): The RTE is the RT responsible
for constructing all other Roots of Trust that are composed of allocated
resources. It must consist of dedicated resources and be supplied with
an Endorsement Key (EK) and/or Attestation Identity Key (AIK). The
dedicated resources in our architecture are DRTM and the platform’s TPM,
which provides the EK and AIK.
An RT composed of dedicated resources is required to perform a self-test
and shut-down in the failure case. The RTE states, that the integrity and
authenticity of the MTM execution environment has to be guaranteed with
platform-specific means. This self-test is in our architecture implemented
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as the check for the correct DaC of the wrapped storage key, the correct
DaC/DaR of the sealed KCommon, the remote attestation of the MTM SLB,
and the replay prevention of MTM states. If either of these checks fails, the
MTM is not functional and shuts down, because it is not able to access its
state or because the failed attestation indicates a potential attack on the
integrity of the PALs.
Root of Trust for Storage (RTS): The RTS provides the PCRs and
protected storage for the MTM. It is established by means of a device secret.
In our architecture, the RTS is constructed by the RTE. If the RTE passed
the self-test, that means the trusted MTM PAL is able to unseal the KCommon
and thus to derive all other keys, it has access to the MTM state. The state
implements the PCRs of the MTM and the protected storage is provided
by KCommon and its successors in the key chain, because only the legitimate
MTM PALs are able to derive this key.
Root of Trust for Reporting (RTR): The RTR reports the measurements
stored by the RTS. It further signs them with a key that is also stored by
the RTS. Thus it holds the secrets required for attestation. The keys of the
MTM and the measurements are stored inside the MTM state and thus they
are protected by the RTS. The attestation functionality constitutes of some
immutable or protected code. In our architecture, this code is implemented in
the MTM PALs and thus authenticated plus integrity protected by the RTE.
Root of Trust for Verification (RTV): The RTV is responsible for check-
ing measurements against Reference Integrity Metrics (RIMs) and extending
the integrity metrics into PCRs. Some immutable or protected code forms
the RTV and, exactly like for the RTR, this code is implemented in the MTM
PALs and is hence protected by the RTE.
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Implementation

In this chapter, we provide details about the actual implementation of our
architecture in terms of design, code size, performance, and constraints. The
details include the Secure Loader Blocks as well as a simple software stack
for applications that use an MTM.
The implementation was tested on two different platforms. The first platform
is an HP Compaq dc5750 with a Broadcom BCM0102 TPMv1.2 chip1 and an
AMD Athlon64 X2 4400+ Dual Core CPU (2,3 GHz). The second platform is
a Dell PowerEdge T105 with a Quad-Core AMD Opteron 1356 CPU (2,1 GHz)
and an ST Microelectronics ST19NP18 TPMv1.2 chip. Both machines run
Ubuntu Linux 9.04 with a vanilla kernel version 2.6.33, whose IMA subsystem
has been modified for the architecture in this thesis.
Unfortunately, this thesis can not present a fully functional prototype im-
plementation due to unresolved hardware problems with the test platforms
during late-launch. An analysis and log of the attempted approaches to
resolve these problems are provided in this chapter.

6.1 Hardware Problem Analysis

The problem encountered with both test machines is an incorrect extension
of PCR17 during late-launch of the Flicker session. On the first platform (HP
dc5750) it seems that the Broadcom TPM does not extend but only set the
PCR17 value. We observed this behaviour for SLB lengths up to 40 bytes2.

1Integrated on the network card
2The actual SLB is longer, but the Flicker kernel module was modified such that it sets

a selected number as length value in the second word of the SLB

75



6.1. HARDWARE PROBLEM ANALYSIS

Although this does not comply with the specifications, the values for an SLB
could be still precomputed for sealing purposes and as hash parameters to
the Setup SLB. But, moreover, the PCR17 value is quite unstable if the SLB
length is bigger. For an identical SLB, the value changes on every call to
SKINIT if the length is more than approximately 160 bytes. Beneath this
threshold, the value is more stable, but still invalid values occur in a sequence
of subsequent Flicker sessions with only one SLB. The authors of Flicker
confirmed this behaviour and suspect that this machine model contains a
faulty Nouthbridge that causes this behaviour. We suspect that a potential
reason for this error could be the deployment of the TPM on the network
card, but could neither verify or disprove this assumption.
The Flicker authors, however, recommended the second machine (Dell T105)
as a substitute that works correctly during their experiments. Unfortunately,
Dell removed this machine from their European stores and it thus came to
a very long delay in the delivery of this machine. Moreover, the delivered
machine is a Quad Core platform, while the machine referenced by the Flicker
authors is a Dual Core. Although, this should not have any impact on the
DRTM operation according to the specifications and the Flicker infrastructure
required only minor adaptions, e.g., halting three instead of one application
processor, this machine also exhibited faulty behaviour.
At first, late-launch did not trigger a reset of the dynamic PCRs. We located
the cause for this behaviour in the locality management of the TPM and could
correct it3. Although the dynamic PCRs are now correctly reset, PCR17 is
not extended with the measurement of the SLB, but with the measurement of
an empty blob. The Flicker authors indicated that this faulty behaviour might
be caused by incorrect Inter-Processor Interrupts in the kernel module. These
interrupts are required to put the application processors into a state in which
they can, on request, join the secure environment and are also mandatory
part of the preparations for late-launch on a multi-core AMD platform. The
original Flicker infrastructure implemented these necessary protocol already
according to the specifications and even after a number of variations of this
implementation we were unable to remedy this error. We further tested for
other possible causes like the TPM driver and the state of the bootstrap
processor, but were still unable to find the cause. It also has to be noted
that debugging on this low abstraction level on a platform is more complex
and time-consuming than the common application code debugging, especially
due to easy crashes in the secure environment and required reboots of the
system as well as the lack of advanced software debugging tools. Hardware

3To be precise: In contrast to the original Flicker version, the OS has now to relinquish
locality 0 before SKINIT is executed
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debugging tools, e.g., an LPC bus sniffer, were not available to us.
Furthermore, the availability of AMD based systems that are suitable for
late-launch in terms of TPM version, chipset, and processor seems quite
limited. To the best of our knowledge, the above mentioned models are the
only off-the-shelf platforms currently available.
A reasonable alternative would be the implementation on an Intel based
platform. However, although DRTM is identical on both vendors on a high
level, they differ extremely when it comes to the implementation details.
Thus, at this point in time in the progress of the thesis, such a switch was
unfeasible considering the time required for the re-implementation.
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6.2 Software Stack

Figure 6.1 illustrates the implemented software stack for applications that
make use of their specific MTM for credential storage and usage. The shaded
boxes on the right hand side (Credential Library, µTSS, TDDL, and Late-
Launch Library) depict libraries that are linked into the application. Arrows
indicate the input and output parameters for the library interfaces between
two layers.
The Credential Library provides the application with the highest level of
abstraction and small interface that is currently limited to the functionality
to sign data, seal data, and attest the MTM state. The Credential Library
implements these functionality based on the MTM services offered by the
µTSS library.
The µTSS is compared to the TSS specified by the TCG extremely minimised
and does not offer the abstraction level of the specified. It focuses on the
Trust Service Provider layer of the TSS and solely implements the required
MTM commands according to the specifications, i.e., it forms the command
blobs that are sent to the MTM. Furthermore, it parses the MTM response
blob and returns the required parameters to the Credential Library, which
forwards them together with the result value to the application
The TDDL library implements the device driver functionality, thus the inter-
face to sent an command blob to the MTM. It thereby forms plus loads the
complete input for the MTM PAL, e.g., the selected MTM state file, TPP
public key, and domain-specific date. It also determines and loads the MTM
SLB that has to be loaded for the MTM command that shall be executed.
To do so, it utilises the Late-Launch Library to communicate with the Flicker
kernel module via the module’s sysfs entries. Furthermore, it parses the
output buffer of the kernel module, saves the updated MTM state and version
information, and returns the MTM response to the µTSS for further parsing.
The motivation to implement the libraries layered like this is the provisioning
of standardised interfaces in between the layers that provide more flexibil-
ity for changing the lower levels of the stack. For example, the DRTM
based architecture could be substituted by an MTM implementation based
on a hypervisor architecture or on secure environments like M-Shield and
TrustZone.
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6.3 Code Size

The main programming language used for the implementation is ANSI C99.
The only part written in another language is the SLB core library, provided
by Flicker, which consists of Assembly x86 code.
In the following we list the sizes in bytes as well as in lines of code of the
different components of our architecture. To determine the LoC we use the
open-source SLOCCount tool4.

Component Description LoC
SLB Corea Environment initialisation, memory protection,

ring 3 switch, clean up, resume OS
223

TPM Driverb Small TDDL(I) for communication with the plat-
form’s TPM

226

TPM Commandsb Required TPM commands 703
Key chain Verifying the wrapped storage key and sealed

KCommon, deriving the keys
464

Version management Virtual counter management and verification, de-
rive counter authorisation

148

State management MTM state instantiation, state integrity and con-
fidentiality

114

MTMc Monolithic MTM implementation 3790
Crypto Cryptographic primitives 4775
Utilities Standard library functions, parameter I/O 228

Table 6.1: The size in lines of code that each component of the MTM and
Setup PALs adds( aprovided by Flicker; bprovided by Flicker, but modified/ex-
tended; cavailable from [35], but adapted/extended)

Table 6.1 presents the sizes in lines of code of the particular components of
the PALs in our architecture. The size for the MTM applies to a monolithic
implementation and thus constitutes the lines of code that are distributed
among the MTM PALs. In our implementation exist three MTM PALs, each
containing approximately one third of the monolithic implementation. The
software TCB for the MTM PAL is solely the SLB Core, which is minimal
with 223 LoC. The rest of the components implement optional features for a
PAL, but are necessary for the MTM PALs in our architecture. Thus, they
form together with the SLB Core the TCB for the applications that utilise
an MTM.

4http://www.dwheeler.com/sloccount/
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SLB Description Size (KB)
Setup Bootstrap a TTP Trust Domain 37594
State Instantiation Instantiates a new MTM state 39124
MTM 1 Implements command subset for RIM cer-

tificates, monotonic counter, and capabil-
ities

45504

MTM 2 Implements command subset for session
management and sealed storage

44820

MTM 3 Implements command subset for key man-
agement, signing, and attestation

46168

Table 6.2: Sizes in kilobyte of the implemented SLBs

Table 6.2 lists the sizes in kilobyte for each of the SLBs in our architecture.
Considering, that in Flicker the highest 4kB of the 64kB of the SLB are
reserved for the runtime stack and 12kB more used during the building of
the page tables, then the PALs take full advantage of the provided space.

Layer LoC
IMAa 1330
Flicker kernel moduleb 694
Late-Launch Library 444
TDDL 111
µTSS 1185
Credential Library 142

Table 6.3: The implementation sizes in lines of code for the software stack
( aprovided by the kernel, but extended; bprovided by Flicker, but modified/ex-
tended)

In Table 6.3 the sizes in LoC of the software stack layers, as presented in Figure
6.1, are listed. Additionally, the modified IMA kernel subsystem and Flicker
kernel module are measured. The µTSS forms the bulk of the stack, because
it is responsible for the implementation of the MTM commands. The TDDL
and the Credential Library are on the other hand rather pure APIs between
their neighbouring layers. The modified Flicker kernel module is 66 LoC
bigger than the original module, because it now implements the measuring of
the application and because it was patched to run under a version 2.6.33 Linux
kernel. The IMA merely grew 14 LoC in order to implement the necessary
interface for the Flicker kernel module to enquire logged measurements.
Table 6.4 lists the sizes in bytes of the required input and output parameters
in our architecture. The MTM state, although already minimised [35], forms
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Parameter Size (Bytes)
TTP Public Key 274
TTP Public Key Hash 20
Wrapped storage key 613
Sealed KCommon 322
State version information 16
MTM state 2030
TTP/Vendor signature 128
Hashes (for 3 MTM SLBs) 60
Application identity 20
CPU state 116

Table 6.4: Sizes of the input and output parameters in the architecture

the bulk of the I/O parameters. Both the wrapped storage key and the sealed
KCommon are remarkably bigger than their actual content (RSA-2048 key
pair and AES-128 key, respectively), due to additional integrity and usage
information added by the TPM. The CPU state consists of a data structure
that contains all necessary information of a CPU, e.g., register values, in
order to dump and reconstruct the CPU state.

6.4 Performance

Despite problems with the DRTM measurement, it works sufficiently enough
to estimate the performance with very high accuracy. For these tests, the
prototype runs in insecure mode, that means that we accept the false mea-
surements of DRTM stored in PCR17 as correct and use them in the context
of our architecture. The only difference during the operation that affects the
performance measurements is the size of the SLB that the TPM measures
during late-launch. If the late-launch would measure correctly, the TPM
would measure an SLB of one of the sizes listed in Table 6.2, while the faulty
late-launch measure an SLB of length 0. Thus, the faulty implementation has
a slight performance benefit.
Performance measurements of the faulty SKINIT instruction yield a mean
execution time of 0.003 ms on our Dell machine5. This corresponds to the
performance measurements conducted by the Flicker authors [73, Section 7]
and confirms that the TPM indeed performs an SHA-1 hash of null bytes.
The estimated performance benefit of the faulty execution, compared to the

5mean of 10 measurements
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correct one, is approximately 133.35 ms, if we assume an SLB size of 48kB
and a linear duration increase in Table 2 of [73].
In the following we provide the runtimes of the particular PALs and analyse
how much each particular operations contributed to the overall runtime.

Command x̄ (ms) σ (ms)
TPM_CreateWrapKey 27864.63 21305.600
TPM_LoadKey12 2616.50 0.609
TPM_GetPubKey 89.84 1.417
TPM_Seal 282.38 0.684
TPM_Unseal 954.39 0.576
TPM_FlushSpecific 42.01 0.370
TPM_ReadPcr 18.24 0.435
TPM_Extend 24.62 0.494
TPM_NV_DefineSpace 192.03 0.699
TPM_NV_ReadValueAuth 18.14 0.436
TPM_NV_WriteValueAuth 83.25 1.770
TPM_OIAP 18.06 0.126
TPM_OSAP 36.06 0.076
TPM_GetRandom (20 bytes) 36.16 1.453

Table 6.5: Mean performance and standard deviation in milliseconds of the
required TPM Commands to the platform TPM (50 measurements)

Table 6.5 lists the mean execution times and their standard deviation for the
required TPM commands in our architecture. The measurements have been
taken with the gettimeofday command inside a small benchmark program
in the legacy OS on our Dell machine. Although the benchmark program
avoids the complete TrouSerS stack and conducts I/O communication directly
via the character device of the platform TPM, these measurements form the
upper bound for the performance. However, since both the TPM driver in our
architecture and in the OS kernel are extremely similar, these upper bounds
are extremely close to the actual performance in the secure environment.
Most of the TPM commands are very stable in their performance and also
fast. Exceptions are the commands involving private key operations, like
unsealing and key un-wrapping during key-loading, or especially the wrapped
key creation. The latter one is not only extremely unstable, but also exhibits
a very high mean execution time.
Table 6.6 lists the mean execution times and the corresponding standard
deviation of the cryptographic primitives in the cryptographic library used
by our architecture. The measurements were taken with the gettimeofday

82



CHAPTER 6. IMPLEMENTATION

Function x̄ (ms) σ (ms)
SHA1 of 2048 Bytes 0.06 0.003
HMAC-SHA1 of 2048 Bytes 0.06 0.003
RSA-1024 private key generation 1650.59 1354.522
RSA-1024 public key generation 0.02 0.001
RSAES-PKCS1-v1_5 (1024 bits) Encryption of 64 Bytes 2.04 0.01
RSAES-PKCS1-v1_5 (1024 bits) Decryption of 64 Bytes 47.60 0.494
RSASS-PKCS1-v1_5 (1024 bits) Signing of 64 Bytes 47.47 0.544
RSASS-PKCS1-v1_5 (1024 bits) Verification of 64 Bytes 2.04 0.008
AES-128 CBC Mode Encryption of 2320 Bytes 0.23 0.004
AES-128 CBC Mode Decryption of 2320 Bytes 0.23 0.003

Table 6.6: Mean performance and standard deviation in milliseconds of the
included cryptographic library functions (50 measurements)

command inside a benchmark program running on top of the OS. There-
fore these measurements form the upper bound for the performance of the
primitives executed in the secure environment. However, the upper bound
is very close to the actual performance, because the system was kept idle
and the only overhead was OS scheduling, which should have been rare on a
quad core system. The cryptographic primitives execute on one CPU with
2.1GHz clock rate and perform therefore very fast and also stable. The only
exceptions are, similar to the TPM commands, the functions involving private
key operations.

SLB x̄ (ms) σ (ms)
Setup 31649.48 22641.21
State instantiation 5893.63 1163.15
MTM SLBs 4218.69 3.7

Table 6.7: Mean SLB runtimes and their standard deviation (10 measure-
ments, excluding MTM command execution time)

The mean runtimes and the corresponding standard deviations of the particu-
lar SLBs in our architecture are listed in Table 6.7. The measurements were
computed based on the CPU clock rate and the number of elapsed clock cycles
(rdtsc command). We excluded the MTM command execution time from the
measurements for the MTM SLBs, because it greatly depends on the kind
of command. The upper bound, however, is approximately the RSA-1024
private key generation execution time, which is required for the creation of a
wrapped key by the software-based MTM.
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Setup
Steps x̄ (ms) σ (ms) %

Derive KV ersion 0.008 0.000 0.000
Derive counter auth 0.004 0.000 0.000
Encrypt state version info 0.021 0.000 0.000
Create TPM wrap key 22667.598 20390.260 71.621
Create reference counter 442.320 3.867 1.398
Load wrap key 2662.846 4.311 8.414
Seal KCommon (4 times) 1523.762 0.001 4.814
Flush loaded wrap key 39.350 0.000 0.124
Verify TTP signature 507.788 0.000 1.6

Table 6.8: Mean performance, standard deviation, and share on overall
mean runtime for each major step in the workflow of the Setup PAL (10
measurements)

Tables 6.8, 6.9, and 6.10 list the mean execution times of the major steps
in the workflow of the particular PALs. The measurements were computed
based on the CPU clock rate and the number of elapsed clock cycles (rdtsc
command). Additionally, the standard deviations of the performances and
the share of each step on the overall mean execution time are provided. The
MTM PAL measurements exclude the MTM command performances for the
above stated reason.
In general, the commands that involve the platform TPM, especially private
key operations or wrapped key generation, form the bulk of the runtimes.
The derivation of KV ersion in the tables 6.9 and 6.10 includes also the loading
of the wrap key, unsealing of KCommon, and flushing of the loaded key. Both
the creation of a new virtual counter during the state initiation as well as the
incrementation of a virtual counter both require one read from and one write
to the TPM NVM. The MTM state initiation requires one RSA-1024 private
key generation for the state’s AIK.

6.5 Constraints

In this section we want to provide some information about constraints in
terms of size and time in our architecture.
First of all, the size of the SLB is very limited with 64kB. Considering the
original purpose of an SL, namely to prepare the execution environment for
bootstrapping a VMM or secure OS, this limitation is not unanticipated. The
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MTM state initiation
Step x̄ (ms) σ (ms) %

Initial PCR17 extension 19.239 0.000 0.326
Derive KV ersion 3805.279 3.452 64.549
Derive counter auth 0.004 0.000 0.000
Decrypt state version info 0.020 0.001 0.000
Encrypt state version info 0.014 0.000 0.000
Verify virtual counter values 14.173 0.000 0.240
Create new virtual counter 139.506 0.000 2.367
Derive KState 0.008 0.000 0.000
Initiate new MTM state 1741.708 1159.523 29.552
Encrypt state 0.101 0.002 0.002
Input/Output parameters PCR17 extension 153.961 0.000 2.612

Table 6.9: Mean performance, standard deviation, and share on overall mean
runtime for each major step in the workflow of the MTM state initiation (10
measurements)

MTM execution
Step x̄ (ms) σ (ms) %

Initial PCR17 extension 19.239 0.000 0.456
Derive KV ersion 3801.656 0.843 90.115
Derive counter auth 0.004 0.000 0.000
Decrypt state version info 0.021 0.000 0.000
Encrypt state version info 0.019 0.000 0.000
Verify virtual counter values 14.173 0.000 0.336
Read virtual counter 0.004 0.000 0.000
Derive KState 0.007 0.000 0.000
Encrypt state 0.088 0.001 0.002
Decrypt state 0.108 0.002 0.003
Increment virtual counter 139.298 0.452 3.302
Input/Output parameters PCR17 extension 211.699 0.000 5.018

Table 6.10: Mean performance, standard deviation, and share on overall
mean runtime for each major step in the workflow of the MTM execution (10
measurements, excluding MTM command)
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limit is impaired by the fact, that the space can not be fully utilised, because
the memory region between the end of the PAL and the 64kB offset is used
as runtime stack, which grows towards the PAL region. The PAL developer
has to take this into account in order to leave sufficient space for the stack so
that it does not overwrite the PAL’s code segment.
Another constraint is the size of the input and output parameters. In Flicker
by default 4kB is allocated for each buffer. If we consider the sizes of the
required inputs and outputs in our architecture (see Table 6.4), that leaves
411kB for the MTM command blob as input. As a consequence, in our
architecture the I/O buffers were augmented to 5kB, thus leaving 1435kB for
the MTM command. Although this size is much smaller than the specified
4kB size of the TPM I/O buffer, it is big enough to cater for all command and
response blobs in our MTM implementation. The input and output buffer
sizes could, however, be further increased if necessary.
The maximum number of Trust Domains on our Dell machine is limited to
three. Although our architecture allocates only four bytes of NVM for each
reference counter, the overhead induced by the TPM, e.g., information about
read and write permissions or a bound platform state, depletes the scarce
amount of available NVM.
The critical factor for the maximum runtime of a Flicker session are the
disabled interrupts during the session. The SLB execution suspends the legacy
OS without preparing the OS specifically for the suspension, thus unhandled
interrupts may cause a system crash during resumption. For instance, on
both our test platforms we experienced the behaviour that a Flicker session
that lasted longer than approximately 8 seconds resulted in a system crash
when the legacy OS resumes operation. This is a practical problem for
PALs that require more time, for example the Setup PAL. However, this
behaviour occurres only when the network cable is plugged in. If unplugged,
no problems were experienced, even with sessions longer than 2 minutes. We
suspect therefore the cause for the crash in unhandled interrupts from the
network card.
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Future Work

In this chapter, we briefly discuss possible future optimisations and open
research issues that we foresee.
A first enhancement of the security would be to enable multi-factor authorisa-
tion. The current architecture is explicitly designed to provide the credential
platform in an application-specific manner. This is motivated by the fact that
personal platforms possess in most cases only one user but several applications
with interest in securing their particular credentials. In this spirit, the current
design excludes any user interaction. Nevertheless, user authorisation and
physical presence can improve security. For example, the well-known values
used for TPM command authorisation could be substituted by user supplied
passwords. Moreover, the credentials are then bound in an application- and
user-specific manner and thus facilitate usage on multi-user systems, e.g., on
public computer platforms. The prerequisites for secure user I/O are a trusted
channel and a trusted path between the user and the secure environment.
First experiments with the Flicker architecture have shown that a polling
PS/2 keyboard driver for the secure environment is possible. Further work in
this direction would be improved driver support for the secure environment,
e.g., a graphics driver based on memory mapped VGA, and especially means
to establish a trusted channel and indicate a trusted path. An example for a
recent research project is the Bumpy architecture of CMU [74], which utilises
an external trusted monitor.
Although, our architecture provides the capabilities for a secure execution
and storage of applications’ credentials, an attacker is still able to misuse the
credentials. In this thesis the TCB was defined as the hardware and software
basis that is critical for the system security and we implicitly excluded the
credential misuse from this definition. In order to provide stronger protection
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for credentials, the architecture also has to prevent their misuse. The two
prevalent factors that enable an attacker to misuse the credentials are the
involvement of OS components in the application identification and the
problem of ensuring runtime integrity. The first factor concerns the IMA
subsystem and the Flicker kernel module, which are responsible for measuring
the application, but are part of the OS and thus prone to software attacks.
The open question here is how these components could be removed from
the architecture while still providing a trusted application measurement.
Alternatively, these components could remain part of the architecture, but
their integrity has to be guaranteed. An authenticated boot (SRTM) is one
approach, but it suffers from the Time of Check to Time of Use problem,
since its measurements are not necessarily valid after the boot process. The
authors of Flicker describe in [73] briefly the design of a rootkit scanner
implemented as a PAL. This scanner measures the kernel text segment, the
loaded kernel modules, and the system call table. This measurement could
also be part of our architecture, for example to bind the credentials to a
specific kernel or to attest the kernel measurement at runtime and rely on
the TTP to evaluate the trustworthiness of the kernel. However, using this
measurement for binding purposes contradicts the meaningful attestation
design goal of Flicker, because it inflates the measurement chain to almost all
of the ill-defined, huge TCB that Flicker avoids. Other recent approaches to
achieve runtime integrity have been listed in Section 3.2 on page 32.
A further open issue for the application identification relates to applications
consisting of interpreted scripts. The kernel’s process management lists the
script interpreter, for instance, Bash shell or Python, as executables, but does
not provide information about the script file that is interpreted. Since the
script file obviously forms the application, it has to be part of the aggregated
application measurement computed by the Flicker kernel module and IMA.
Since we currently can not identify this file via the kernel process management,
it is omitted from the application ID, which is hence incomplete.
In terms of applicability, the application identification ideally is based on some
more flexible mechanism than a hash measurement. Currently, application
and library measurements change when they are upgraded and thereby the
application loses its bound credentials. Some form of secure migration of
the credentials after an application/library update would be one option.
Another option is property-based attestation as presented in contemporary
research [86, 92, 65, 63].
A further practical optimisation relates to support for longer Flicker sessions.
As described earlier, long sessions cause a system crash at legacy OS resump-
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tion, presumably because of unhandled interrupts. One possible solution
would be to add interrupt handlers to the PAL, but this seems hardly feasible
considering the limited space of SLBs and the complexity of the handler
routines. A better solution would be to prepare the OS for the long session,
e.g., suspend interrupt critical devices like the network card.
Open research regarding the HW support would be an improvement of
the resources available to the secure environment. Bearing in mind the
original purpose of DRTM, the bootstrap of a secure OS/VMM, the current
resources in terms of space or DRTM execution environment are sufficient.
However, with respect to the use cases enabled by the Flicker architecture,
the available resources could be improved. For example on mobile devices,
the processor security extensions like M-Shield or TrustZone provide secure
ROM and RAM, a firewalled entry to the environment based on signatures,
cryptographic accelerators, or a unique hardware key. Projects like On-board
Credentials [64] already demonstrated the enhanced possibilities for credential
architectures based on such security hardware.
Future optimisations and open issues regarding our MTM credential platform
concern the secure, specification compliant instantiation of the MTM states
and the reset of the MTM. Our architecture utilises a MRTM implementation,
which does not include the concept of a (physically present) MTM owner
and does not provide an EK. Thus, an AIK together with its credentials are
assumed to be pre-installed by the manufacturer. But since we now instantiate
the state on the user’s platform, an AIK has to be securely provisioned to
the new MTM. A possible solution would be to add a protocol that leverages
the platform TPM to protect and deliver the AIK to the MTM PAL for the
instantiation. Another solution would be to implement an EK and allow
MTM owners, e.g., on an MLTM, but this would entail more MTM PALs with
a bigger input buffer because of the increased state size and MTM code-base.
A second issue concerns the MTM reset. The specifications define that certain
volatile data has to be reset if the MTM platform reboots. For instance, the
static PCRs are reset to zero and all loaded keys and sessions are cleared. In
our implementation, the MTM preserves its state even over a system reboot
due to the secure storage. The open questions here include, e.g., when to
reset the MTM state: at application “reboot” or at system reboot, or how
to reset the MTM states of several applications without actually involving
the applications, e.g., by splitting the state in a resettable and non-resettable
part.
Another issue specific to MTM and TPM is the long-term security of the
utilised cryptographic primitives. For example, SHA-1 is not considered secure
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anymore. The essential problem is the inflexibility of the TPM and MTM
specifications regarding these primitives. In our architecture, the benefit of
implementing the MTM as software instead of as dedicated hardware, make
it possible to upgrade the MTM to newer, stronger cryptographic algorithms.
However, the TPM, which is fundamental for the security of our architecture,
is inflexible in this matter and thus in the long-term constitutes a possible
security risk.
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8

Conclusion

In this thesis, we presented our solution for an architecture that provides
application-specific credentials, deployed by means of TCG Dynamic Root
of Trust for Measurement on an AMD based platform. The rationale to use
DRTM was to approach the basic vulnerability for the security of applications’
credentials, namely the ill-defined and huge Trusted Computing Base on
commodity operating systems.
We employed the Flicker infrastructure by Carnegie Mellon University as the
fundamental implementation of DRTM in our architecture. Flicker provides
a hardware-isolated and measured execution environment and the possibility
to easily resume the legacy OS. The essential problem in this setup is the
statelessness of Flicker sessions, which implicates that the deployed credentials
are neither bound to their particular application nor protected from misuse
by other applications, such as malware.
Although we utilised our architecture in this thesis to implement a software-
based TCG Mobile Trusted Module as the application-specific credential
platform, it is generic enough to form a framework that provides the link
between applications and the secure environment for different types of Flicker
PALs. Trust Domains were introduced as a concept to form logical units
consisting of multiple PALs.
Our architecture design solves the statelessness problem by binding to each
application one specific MTM. The MTM can be leveraged for securely
executing and storing the application’s credentials in an environment that
provides a minimised TCB and isolation from the legacy OS. We thereby
utilise the Integrity Measurement Architecture subsystem and the process
management of the kernel to identify applications.
In this context we explored related work regarding possible solutions for
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credential platforms or security architectures that minimise the TCB of
applications.
We analysed hardware- and software-based attack scenarios against DRTM,
our architecture, the operating system, and the applications. As result of our
analysis we conclude that hardware-based attacks and software-based attacks
against late-launch are prevented by the design of DRTM. Software-based
attacks against our architecture are detected through remote attestation
based on the measured execution of the MTM. The most vulnerable attack
point is the system- and application-level software. Attacks that compromise
the IMA subsystem, the process management in the kernel, or the Flicker
kernel module may lead to a successful misuse of the application’s credentials.
However, the disclosure of credentials is not possible.
Possible solutions to alleviate the misuse problem, future optimisations, and
open research issues were briefly discussed. We also provided size and perfor-
mance figures of a prototype implementation and an analysis of encountered
hardware problems in the context of our prototype.
In conclusion, we present a new approach to securely using and storing
credentials. The design of our architecture is oriented towards the mobile
device and personal device sectors in terms of motivation to bind credentials
to applications rather than to users. Our approach to leverage a secure
execution environment, provided by the platform’s hardware, in a minimised
manner also resonates well with the tight memory and energy constraints
of mobile devices. An attacker in control of the highest privilege level is
not able to disclose – but only misuse – credentials. This is in contrast to
other approaches like hypervisor based architectures, where a privileged level
attack provides full credential access. In comparison to the original Flicker
architecture, this work mitigates credential misuse, since the attacker is forced
to mount sophisticated software-based attacks against the kernel at run-time.
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