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Abstract
Google’s Android OS provides a lightweight IPC mechanism
called Binder, which enables the development of feature-rich
apps that seamlessly integrate services and data of other apps.
Whenever apps can act both as service consumers and service
providers, it is inevitable that the IPC mechanism provides
message receivers with message provenance information to
establish trust. However, the Android OS currently fails in
providing sufficient provenance information, which has led
to a number of attacks.
We present an extension to the Android IPC mechanism,

called Scippa, that establishes IPC call-chains across appli-
cation processes. Scippa provides provenance information
required to effectively prevent recent attacks such as confused
deputy attacks. Our solution constitutes a system-centric ap-
proach that extends the Binder kernel module and Android’s
message handlers. Scippa integrates seamlessly into the sys-
tem architecture and our evaluation shows a performance
overhead of only 2.23% on Android OS v4.2.2.

1. INTRODUCTION
Smartphone operating systems allow end-user customiza-

tion of the phone’s functionality with 3rd party apps. To
make this extensibility possible and to simultaneously protect
the end-user’s privacy, current designs of smartphone oper-
ating systems exhibit a complex combination of sandboxing-
based privilege-separation and extensive message-based data-
sharing. The popular Android OS—the focus of this paper—
facilitates the integration of remote services and data into an
app using a very lightweight IPC mechanism called Binder,
which forms the primary channel for inter-app communica-
tion. To realize privilege-separation between apps, Android
implements app sandboxing by assigning each app a dis-
tinct user ID under which the app’s processes are executed.
To implement the least-privilege principle, Permissions, i.e.,
privileges, are assigned to UIDs. Android ships with a set of
pre-defined permissions to protect the Android application
framework API, for example, reading the user’s address book
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or retrieving the device’s geolocation. It further allows app
developers to define custom permissions to protect their apps’
interfaces. Protecting an app interface with permissions is
realized by 1) statically declaring in a manifest file which
permissions are required from a caller to successfully access
each app component; or by 2) performing runtime checks
in the app components using IPC provenance information
provided by Binder, i.e., the calling process’ UID.
However, Android’s current solution to protecting app

interfaces is unsatisfactory. Statically declaring the required
(custom) permissions for interacting with app components
reduces the scope of access checks to the permissions each
app holds and excludes more app-specific information such
as the developer ID or package name. This solution is not
scalable and makes it virtually impossible to flexibly endorse
specific apps for component access: permissions can be either
requested by any app or require apps to be signed with the
same key, which in turn would require a more flexible public
key infrastructure that does not exist. Performing runtime
checks to protect app components, on the other hand, is more
flexible and allows more fine-grained access control, but re-
quires that the IPC mechanism provides message provenance
information to app components. Android’s system model
does not fulfill this requirement for sufficient IPC provenance
information for all app component types. While it provides
the caller UID to ContentProvider and Service components,
it fails in providing this information to components that are
receivers of Intent messages–the most prominent inter-app
communication mechanism. Prior work [22, 2, 3, 7, 4] has
identified different attacks that can occur as a result of this
shortcoming, most prominently confused deputy attacks [11].
Contributions. In this paper, we identify the techni-

cal root-cause for this shortcoming in providing IPC prove-
nance information—a mismatch between Android’s concept
for inter-application communication at its middleware layer
and at its kernel layer. In this multi-layered communica-
tion framework, the Binder kernel module is responsible for
providing the sending process’ user ID to the receiving pro-
cess. However, logical communication occurs between app
components—in the literature commonly referred to as In-
ter Component Communication (ICC) [7, 8]—using different
abstraction levels of Binder IPC at Android’s middleware
layer. These abstractions introduce indirections and message
dispatching that cause Binder’s IPC provenance information
(i.e., the sender UID) to be lost along the ICC control flow
between app components.
We then present Scippa, our extension to Android’s inter-

application communication framework, to remedy this short-



coming of Android’s architecture. Scippa builds Binder IPC
call-chains for ICC control flows and thus provides the re-
quired provenance information to apps. Although Quire [4]
first identified the need for provenance information on An-
droid, Scippa is, to the best of our knowledge, the first
approach that directly addresses the mismatch between the
middleware and the kernel-level security design in Android’s
multi-layered inter-application communication framework.
At the core of Scippa is an extension to the Binder kernel

module, which constructs and forwards IPC call-chains across
distinct application processes. The kernel module extension
is complemented by extensions to the message handling
routines in Android’s application libraries to propagate call-
chains across all components of an app. In contrast to Quire’s
prototypical implementation, which requires app developers
to explicitly pass on call-chain information during ICC, our
extensions integrate seamlessly into the system architecture
and call-chains are established transparently to apps and
app developers. Only when developers want to retrieve call-
chains, they must be aware of a new system API.

Scippa enables for the first time determining the ICC
caller ID within all types of Android app components. For
instance, apps can now identify the sender of received broad-
cast Intents and thus distinguish spurious notifications from
benign ones; they can also detect if a security-sensitive Ac-
tivity was invoked from a trustworthy caller. This allows
apps in general a more fine-grained, flexible self-governing
of their interaction with other apps and provides the means
to effectively mitigate recently reported attacks such as con-
fused deputy attacks [11, 22, 3]. Additionally, we present
and discuss changes to Android’s app model to enable the
return of finalized call-chains to the sending app. Providing
information about how their messages were distributed, both
by the system and other apps, gives senders the means to
detect spurious or malignant distribution of their messages
(e.g., message hijacking [2]).

The evaluation of our prototype implementation for An-
droid v4.2.2 shows that the performance overhead imposed
on Binder IPC messages is only 2.23% and thus does not
impede the overall system performance.

2. BINDER-BASED INTER-APP COMMU-
NICATION ON ANDROID

We first provide the necessary technical background for
Scippa. We introduce the Android OS and describe how it
uses Binder-based IPC for different types of inter-app commu-
nication. In particular, we explain how Binder transactions
are integrated into Android’s security design.

2.1 Primer on Android
Android is an open-source software stack for embedded

devices. The lowest level of this stack consists of a slightly
modified Linux kernel that is responsible for basic services
such as memory management, device drivers, or inter-process
communication (IPC). On top of the Linux kernel lies the
extensive Android middleware: it consists of native libraries
(e.g., SSL), the Android runtime with the Dalvik Virtual
Machine, and the application framework. The middleware
implements the majority of Android’s application API, which
is complemented by pre-installed system apps at the appli-
cation layer. The API can be extended with 3rd party apps
on top of the software stack.
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System	  Server	  
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Service	  
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Figure 1: Binder-based inter-component communication.

Android apps are composed of different components and
each app is sandboxed by executing it in a separate process
with a distinct user ID (UID) and assigning it a private data
directory on the filesystem. The four basic app components
are Activities (GUI for user interaction), BroadcastReceivers
(mailbox for broadcast Intent messages), ContentProviders
(SQL-like data management), and Services (long term op-
erations without user interaction). All components can be
interconnected remotely across process boundaries by using
different abstractions of Binder IPC. These interconnections
are commonly referred to as Inter-Component Communica-
tion (ICC) [8]. To achieve privilege separation between app
and realize the least-privilege principle, Android introduces
Permissions, i.e., privileges that an app must have been
granted by the user at install-time to access security- and
privacy-sensitive resources.

2.2 Binder-based ICC
Although Android builds on top of a Linux kernel that

provides “classical” channels such as files or sockets, the pri-
mary IPC mechanism on Android is Binder. In the following
we take a top-down approach to ICC in Android. We show
how Android uses ICC and explain afterwards how ICC is
implemented as Binder transactions. We refer to external
documentation [25] for more details on Binder.

2.2.1 Using Binder-Based ICC on Android
Figure 1 provides a high-level overview of standard Binder

IPC in Android when used for connecting components of
different apps. Apps can, for instance, either contact system
services such as the Location Manager Service or communi-
cate directly with each other. All Inter-Component Com-
munication (ICC) builds on top of Binder IPC. User space
processes can communicate with each other over Binder IPC
via the Binder kernel module that is exposed through the
/dev/binder sysfs entry. For inter-component communica-
tion, the libandroid_runtime library, included in all apps,
includes an implementation of the Binder communication
protocol. Moreover, since application developers usually
do not want to deal directly with the low-level mechanics
of inter-process communication, Android’s design provides
different levels of abstraction for Binder IPC. These allow
developers to easily make use of Binder IPC at the applica-
tion level to connect different apps’ components (cf. Figure 1
for Stubs, Proxies and Managers).
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Figure 2: Binder transaction protocol.

Stubs and Proxies. The most basic level of abstraction
of Binder IPC are Stubs and Proxies, which implement
remote procedure calls (RPC) via Binder IPC. A Proxy at
the caller-side marshals the method parameters into primitive
data types and transfers them via IPC to the recipient, where
Stub unmarshals the primitives into the original parameters
and calls the actual method.
System Services and Managers. Managers are part

of the SDK and encapsulate pre-compiled Proxies for system
apps and services like the Location Manager Service that
implement the Android application framework API.
Intents. The highest level of abstraction are so-called

Intent messages. An Intent is a data structure used to provide
an abstract description of an operation to be performed by
its receiver(s). Common usages of Intents include starting
Activity components or broadcasting notifications to apps.
Since the sender of an Intent can both explicitly state the
target component and implicitly define potential receivers
through a description of the intended action, the actual
target app(s) must be resolved at runtime. This is the task
of the ActivityManagerService, which relays all Intents.

2.2.2 Binder Transactions and Integration Into An-
droid’s Security Design

Before we explain how Binder acts as a building block in
Android’s security architecture, we first explain how Binder
conducts transactions between two app processes. Figure 2
illustrates abstractly a transaction between App A (sender)
and App B (receiver). To initiate the transaction, A writes
its transaction data via /dev/binder to the Binder kernel
module (step 1). The transaction data contains a token
(recv) identifying the communication peer (i.e., B) as well
as some payload containing, e.g., the method ID to be exe-
cuted by the receiver plus the method arguments (e.g., an
Intent object). The kernel module then resolves the token
to identify the recipient of the transaction, i.e., B, and ex-
tends the transaction data with the sender UID, i.e., UID
of A. Afterwards, the module copies the transaction data
into the user space of an IPC Thread selected from the IPC
thread pool of B (step 2). If the caller expected a reply
(two-way transaction), the reply is sent back to the caller via
the kernel module (steps 3 and 4). A two-way transaction is
implemented as a closed wait, i.e., the sender thread blocks
until it receives a response and the kernel module ensures
that this response originates from the receiver thread.
Providing the sender UID to the receiving component is

pivotal for enforcing permissions in Android’s security design.
First, system services and apps, which implement the applica-
tion framework API, use this information to perform runtime
checks (i.e., PackageManager.checkPermission(permission,
uid)) whether calling apps hold the required permissions to
access their interfaces. Using runtime checks enables these
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(IPC Thread)
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(Main Thread)

1. {payload, UID=A}

0. TLS.callingUID = B 0. TLS.callingUID = B

2. TLS.callingUID = A

getCallingUid() = A

3D. Dispatch message to
      Handler of Main Thread

4D. Process message on
      MainThread

getCallingUid() = B

3L. Process message locally

4L. TLS.callingUID = B

Figure 3: Handling of Binder transactions by the receiver
and availability of caller UID.

services to enforce permissions flexible and at the granular-
ity of interface functions instead of app components. For
instance, the Location Manager Service requires either the
Permission FINE_LOCATION or COARSE_LOCATION depending
on the parameters passed to the API call. Second, system
services like the Activity Manager Service mediate between
caller and callee applications (e.g., when an app queries a
remote ContentProvider or when delivering an Intent) and
these system services use the caller UID when mediating to
check whether the caller is allowed to access the callee.

3. PROBLEM DESCRIPTION
As explained in Section 2.2.2, Binder provides IPC mes-

sage recipients with the UID of their direct caller. However,
as shown in Section 2.2.1, Android introduced different ab-
straction layers for Binder IPC to enable an inter-component
communication on top of the inter-process communication.
These abstractions introduce indirections and message dis-
patches that cause the caller UID provided by Binder to be
lost along ICC control flows or to be insufficient.

3.1 Message Dispatching
To understand how the caller UID provided by Binder

can be dropped in ICC, one first needs to examine how an
incoming IPC transaction is handled at the receiver side.
Figure 3 extends Figure 2 after the receiver (App B) has
received the transaction (Step 2 in Figure 2 and Step 1
in Figure 3). The IPC thread of App B that is selected to
handle this incoming transaction copies the sender UID of the
transaction (i.e., UID=A) into its thread-local storage (TLS;
step 2). Any application code executed on this thread can
query this sender UID through the Binder.getCallingUid
function. However, if the thread is not processing a Binder
transaction such that the TLS gets never updated, this
function call defaults to the threads own information (e.g.,
Binder.getCallingUid would return the UID of the thread
itself, as set in step 0).
A received transaction can be processed in one of two possi-

ble ways and depends on the targeted component type: First,
the message could be handled locally in the context of the
IPC Thread (step 3L), which preserves the IPC provenance
information. A Service or ContentProvider component, for in-
stance, would be executed by default in this context. As a con-
sequence, these components can call Binder.getCallingUid
at any time and retrieve the process UID that triggered
their current execution. As explained in Section 2.2.2, this
is pivotal for enforcing the default permissions in Android’s



Intent
Receiver

Send Intent Deliver Intent

Resolve Receiver} }

1st Binder transaction 2nd Binder transaction

Intent
Sender AMS

Figure 4: Indirection in Intent-based ICC.

system services. Once the execution of app code on the IPC
thread has finished, this thread resets its TLS (step 4L).
Alternatively, the IPC Thread can dispatch the processing

of a received message to a worker thread (by default the appli-
cation’s Main Thread1). The message is dispatched by means
of Android’s Handler mechanism2 (step 3D). For instance,
this worker thread typically performs the handling of received
Intents, which includes the processing of received Broadcast
Intents, executing IntentServices, as well as Activity-related
Intents (step 4D). However, the worker thread is executed
in a different context and naturally with a different TLS.
Thus, calling Binder.getCallingUid on the worker thread
will always result in the retrieval of the worker thread’s pro-
cess UID. Dispatching the message will, therefore, effectively
drop IPC provenance information: Components executed
on the application’s worker thread will have no information
about which process has triggered their current execution
and, hence, cannot distinguish whether their execution is
legitimate and whether they can trust any received payload.

3.2 Indirect Communication
Android’s model for ICC also introduced indirect commu-

nication between components, which renders Binder’s IPC
provenance information insufficient, in particular in the case
of Intent-based ICC. As mentioned in Section 2.2.1 and illus-
trated in more detail in Figure 4, the ActivityManagerService
is responsible for relaying Intents between apps. Thus, the
actual communication between Intent senders and Intent
receivers consists of two distinct Binder transactions. As a
consequence, Binder’s IPC provenance mechanism will at
the receiver’s side always identify the ActivityManagerSer-
vice as the IPC caller, instead of the actual origin of the
received Intent (i.e., the UID of the Intent sender). An ex-
ception from this shortcoming are Activity-related Intents
that require a return value from the receiver. In that specific
case, the Intent receiver can request the sender ID from the
ActivityManagerService.

3.3 Provenance Information vs. Permissions
Many attacks [22, 7, 3] that have been reported in the

Android security literature can be effectively mitigated if
the callee is provided with comprehensive IPC provenance
information. In rare cases [7], the cause for the discovered
vulnerability was simply a forgotten permission check. In
general, however, the situation is more complex. The con-
fused deputy attacks presented in [22] relied on a privileged
BroadcastReceiver that modified the system state (e.g., Wi-
Fi or GPS state) on behalf of any broadcast sender. The
receiver did not check whether the sender was entitled to
send this command, since the current Android design does
not provide the technical means that enable the Broadcas-
tReceiver to retrieve the caller’s UID and to endorse the
1Also referred to as UI Thread or Activity Thread.
2http://developer.android.com/reference/android/os/
Handler.html

caller for this privileged command. As a potential fix, a
new permission could be introduced to protect this receiver
from receiving Intents from unprivileged apps. However, this
approach would be very inflexible: it would require a new
permission for every distinct privileged receiver, especially
when a receiver holds multiple privileges (e.g., Wi-Fi and
GPS) or the exact privileged operation depends further on
message parameters. We assume these to be the reasons why
the vulnerabilities mentioned above are still not fixed in An-
droid v4.2.2, although they have been known since v2.2 [22].
In contrast, provisioning comprehensive IPC provenance in-
formation as in Scippa provides the means for a flexible and
fine-grained access control to (system) app developers and
is, thus, preferable to effectively prevent attacks, such as
confused deputy attacks [22, 3].

4. REQUIREMENTS ANALYSIS
In this Section, we define our adversary model, derive

requirements and discuss challenges for a comprehensive
Binder IPC call provenance on Android.

4.1 Adversary Model
The attacker model for our design of Scippa considers a

strong attacker that is able to mount confused deputy, Intent
hijacking and Intent spoofing attacks.
Confused Deputy Attacks. We adopt the confused

deputy attacker model [11] that was adapted to the specific
scenario of Android [4, 22]. In this model, a malicious app
with an insufficient set of permissions for its malign purpose
tricks a privileged app into executing its privileges on behalf
of the malicious app. For instance, Enck et al. [7] reported
the possibility of sending an Intent to the Phone app in order
to start a phone call without holding the corresponding
CALL_PHONE permission. Porter Felt et al. [22] discovered
several BroadcastReceiver components in system services that
acted as confused deputies and allowed any app to change,
for example, the Wi-Fi or GPS status.
Intent Hijacking and Spoofing. In addition to con-

fused deputy attacks, we consider Intent hijacking and Intent
spoofing attacks [2]. To mount an Intent hijacking attack,
the attacker registers an app in the system such that (or-
dered) broadcast Intents or certain Activity-related Intents
are delivered to this registered app instead of to the actually
intended recipient. Thus, the malicious app is able to receive
any information contained in the Broadcast. Additionally, in
the context of Activities, the attacker can use this technique
to mount phishing attacks.
Restrictions. We focus in this work exclusively on Binder

IPC and exclude other IPC channels such as files or sockets.
A solution for these alternate channels would require addi-
tional extensions to low-level services such as the filesystem.
Moreover, we limit our solution to direct IPC and do not
consider covert channels as leveraged in collusion attacks [24,
16]. Finally, we do not explicitly consider attacks that com-
promise the system integrity such as root exploits or attacks
against system components. However, we consider 3rd party
apps to be in full control of their sandbox. Apps can include
native code that is able rewrite the application code.

4.2 Requirements and Challenges
In this section we derive the necessary requirements for

Scippa and elaborate on technical and conceptual challenges
in context of the Android system model.

http://developer.android.com/reference/android/os/Handler.html
http://developer.android.com/reference/android/os/Handler.html


Availability of Provenance Information. Due to mes-
sage dispatching, provenance information is currently only
available to app components that are executed in the con-
text of a receiving IPC thread. Thus, the first requirement
for a comprehensive solution is to extend Android’s app
model to propagate IPC provenance information to all app
components. A particular challenge to be addressed in this
context is to identify the correct IPC context of each thread.
The Main Thread, for instance, usually handles workloads
dispatched by multiple IPC threads. Hence, its current IPC
context depends on the IPC thread it is currently serving.
Building System-Centric IPC Call-chains. By de-

fault, Binder provides apps with the UID of their direct
caller. However, when considering the indirections in An-
droid’s Intent-based ICC, this information is insufficient for
callees to identify the initiator of incoming requests. This
leads to the second requirement: it is necessary to establish
system-centric call-chains for Binder IPC so that we can
provide receivers of Binder transactions with provenance
information. This would enable receivers to answer questions
like “Who sent this Intent?”.
Returning Call-Chains to Senders. While Android

provides the receiver of a Binder transaction with limited
means to retrieve the sender’s UID, it does not provide any
feedback to the sender on how their message was handled
in the system. This missing feedback makes the senders
unaware of, e.g., Intent hijacking and phishing attacks [2].
The third requirement is, therefore, to establish a feedback
mechanism for IPC senders by returning already established,
finalized call-chains to them. This enables the senders to
analyze how their message was handled both by the sys-
tem and other applications and, thus, to detect potential
hijacking and phishing attacks. A technical challenge is to
efficiently address branching of call-chains, which leads to a
1:N communication (e.g., when broadcasting an Intent).
Tagging Asynchronous Messages. Although Binder

transactions are synchronous, the protocols and mechanisms
Android deploys on top of Binder can be asynchronous. For
instance, sticky Broadcast Intents are kept in the system
and are delivered even to recipients that register after the
broadcast was sent. Thus, to effectively fulfill the first three
requirements, this asynchronicity needs to be addressed, e.g.,
by tainting asynchronously delivered messages with their
associated IPC provenance information.

5. SYSTEM-CENTRIC IPC CALL-CHAINS
In this section, we describe our extensions to Android’s

Binder IPC at the kernel and user space to establish call-
chains along direct ICC control flows. Further, we elaborate
on extensions to Android’s message handling mechanism to
propagate those call-chains between the threads of an app.

5.1 Establishing Call-Chains
At the core of our solution are extensions to the Binder

kernel module. In Binder, IPC messages are passed between
processes as Binder transactions. Our extensions construct
call-chains across app processes by linking the transactions
along a direct thread of control for inter-application commu-
nication. Figure 5 illustrates recursive Binder transactions
between three apps A, B, and C. For instance, App A could
be an Intent sender, App B the ActivityManagerService, and
App C the Intent receiver (cf. Figure 4). Moreover, Figure 5
shows that we differentiate in our design between two-way

App A App B App C

trans#1 = {payload, chain=[A]}

trans#2 = {payload, chain=[A,B]}

reply#2 = {payload}

reply#1 = {payload}

*reply#1

One-way pseudo reply Two-way reply

Figure 5: Call-chains during recursive Binder IPC calls.
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Linux Tasks
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Task B
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Figure 6: Constructing call-chains in recursive transactions.
The dotted line represents the pointer after Transaction#2.

and one-way transactions. In recursive two-way transactions
the second transaction trans#2 is nested in the first transac-
tion trans#1. In contrast, in one-way transactions trans#1
is finished before trans#2 is triggered, as illustrated by the
pseudo reply *reply#1.
Binder transactions. The operations performed within

the Binder kernel module in this scenario are depicted in
Figure 6. In general, for each process that registers with
Binder as a sender/receiver, the kernel module sets up Binder
Proc information associated with the process as a whole
and Binder Thread information associated with a partic-
ular thread of the application process (i.e., threads from
the app’s Binder IPC thread pool and the main thread).
When App A sends a message to App B, the Binder kernel
module creates new transaction data Transaction#1, where
transaction_data contains the message, from_parent and
to_parent point to parent transactions at the sender’s and
receiver’s side in case of recursive transactions, and from_-
thread and to_thread point to the sender’s and receiver’s in-
volved Binder Threads. The transaction_stack attribute
of Binder Thread points to the last processed (i.e., last sent
or received) transaction of the associated thread. When an
IPC thread of App B is ready to receive this transaction,
the message is copied from the kernel to the thread’s user
space. At this point the kernel module provides the receiver
thread with the sender UID (cf. Step 4 in Figure 2), which
is retrieved from the kernel task information associated with
the transaction sender’s Binder Proc.
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Figure 7: Message processing by Handler on Main Thread.

Constructing Call-Chains in Two-Way Transactions.
As shown in Figure 5, App B issues a recursive call to App
C while handling the call from App A. In Figure 6 this is de-
picted as Transaction#2. The attributes of Transaction#2
are set the same as those of Transaction#1. However, since
Transaction#2 is the most recent transaction for App B,
its transaction_stack pointer is adjusted accordingly. The
dotted line represents the pointer after Transaction#2.
In Scippa, we attach the current state of the call-chain

to each transaction data. To this end, we extended the
transaction data structure with new attributes to hold a
call-chain. Every time a recursive call is made, the kernel
module copies the call-chain from the direct predecessor
transaction to the new transaction (or starts a new call-chain
if no predecessor exists) and appends the UID of the current
sender to the call-chain. In addition to the UID, we also
save the sender’s process and thread ID in the call-chain and
assign every new call-chain a unique ID.
Constructing Call-Chains in One-Way Transactions.

For one-way transactions, the mechanism depicted in Fig-
ure 6 is not applicable, since Transaction#1 is freed be-
fore Transaction#2 is allocated. Thus, when continuing
the chain, the data structure for the direct predecessor of
Transaction#2 no longer exists. To establish this missing
link between transactions, we save the last received call-chain
as part of the Binder Thread. When the application code
executing on the IPC thread sends the next transaction (i.e.,
transaction B-C), the saved call-chain is continued. This
solution is based on the observation that IPC threads are
at any given time either executing app code as direct conse-
quence of the last received IPC call, or, when this execution
has finished, return to a state in which they can receive the
next call and hence next call-chain.

5.2 Intra-App Call-Chain Propagation
As explained in Section 3, certain types of IPC messages are

dispatched by the receiving IPC thread to the Main Thread
(or a dedicated worker thread) by adding it to the Main
Thread’s Handler message queue. The Main Thread handles
queued messages sequentially (cf. Figure 7). Thus, the
current IPC context of the Main Thread directly depends on
the message currently processed. To propagate the call-chain
received by the IPC thread to the Main Thread, we extended
the Message and Looper classes of Android’s application
libraries to attach the received call-chain to new messages for
the Handler. The Main Thread’s Handler class is extended
to always update its current IPC context with the call-chain
of the message it processes next. Thus all outgoing IPC
during this processing continue the call-chain correctly.

5.3 Asynchronous Call-Chain Propagation
One particular challenge for establishing call-chains that

include broadcast Intents are sticky broadcasts. As long
as the sender app does not cancel the broadcast and does
not get uninstalled, sticky broadcasts are stored by the Ac-
tivityManagerService. These broadcasts are even delivered
to relevant Broadcast Receivers that register in the system
after the broadcast Intent has been sent. To address this
asynchrony within the control flow from the Intent sender
to the receiver, we modified the ActivityManagerService to
tag stored sticky broadcasts with the call-chain at the time
the broadcast Intent was stored. Additionally, we modi-
fied the ActivityManagerService’s logic for delivering sticky
broadcasts to adjust its current IPC context according to the
call-chain stored with the sticky broadcast before sending
and to restore its original IPC context afterwards. As a
result, sticky broadcasts continue the call-chain so that its
receivers can now identify the original broadcast sender.

5.4 Accessing Call-Chains from User Space
To provide the current call-chain information to the user

space, we pass this information as part of the binder_-
transaction_data from the kernel to the IPC thread that
receives the transaction. We extended the Android runtime
library (cf. Section 2.2.1) to extract the call-chain from the
transaction data and to subsequently store it in the thread
local storage (TLS). From there it can be retrieved by any
application code that is executed on the same thread. Similar
to the default getCallingUid function, we introduce a new
API function getCallChainUids to retrieve the call-chain.
App developers can then retrieve information about those
chained UIDs from the system—including the UIDs’ package
names, developer signatures, or permissions—and implement
a fine-grained access control based on that information.
As explained earlier, some scenarios require that the user

space is able to set its current call-chain. Therefore, we
extended the Binder classes with functions to set the call-
chain of the current thread. When a new Binder transaction
is triggered, the set call-chain is passed to the Binder kernel
module as part of the send transaction data. To prevent the
user space from forging or modifying call-chains, a token-
based approach—i.e., user space processes only hold a read-
only reference, bound to their UID, to retrieve the call-chain
from the kernel space—could enable the kernel to verify that
call-chains retrieved from user space were originally created
by the kernel and hence to discard illicit chains.

5.5 Returning Call-Chains to Message Senders
Our extension to the kernel module propagates finished

branches of call-chains back to the initial sender. We ex-
tended the Binder protocol with a new flag BR_CALLCHAIN
to send a finalized branch of a call-chain back to the app
that started this chain. To distinguish branches of different
call-chains, the kernel module additionally provides the call-
chain ID to the user space. While this mechanism returns
all finalized branches to the sender, ongoing work extends
Android’s application model to efficiently store and manage
this information. We are in the process of implementing a
new application component type dedicated to this task.

6. EVALUATION
In this section we evaluate and discuss the implementation

of Scippa in terms of effectiveness and performance impact.
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Figure 8: Performance overhead of Binder transactions
vs. payload size and frequency breakdown of payload sizes.

6.1 Experimental Methodology
All our experiments were performed on a standard Galaxy

Nexus development phone (Dual-core 1.2GHz Cortex-A9
CPU, 1GB RAM). We implemented Scippa as a modifi-
cation to the Android OS code base of v4.2.2_r1.2b and
the Android Linux kernel in branch android-omap-tuna-3.0-
jb-mr1.1. Since the resolution of the Linux time facilities
were too coarse grained for our microbenchmarks of Binder
transactions, we leveraged the ARM Performance Moni-
toring Unit to calculate the performance overhead in CPU
cycles. Since the PMU counts cycles per CPU core on our
dual-core platform, we modified the Binder kernel module to
acquire a spinlock for the duration of each measurement, thus
eliminating the possibility that the current Binder thread
is re-scheduled on the other CPU core while executing the
measured code segment. Additionally, to be able to estimate
the performance overhead in seconds, we adjusted the CPU
frequency governor to always clock the CPUs at the maxi-
mum rate of 1.2GHz. Finally, to reduce the level of white
noise in our measurements, we did not run any other apps
except for our benchmark apps. Thus, all measurements
approximate the lower bound for the actual overhead.

6.2 Performance Impact
To evaluate the performance impact of Scippa, we per-

formed i) microbenchmarks of transactions in the Binder
kernel module and ii) reimplemented relevant parts of the
user space benchmarks of the closely related work Quire [4].
Transaction microbenchmarks. We performed mi-

crobenchmarks within the Binder kernel module for building
and continuing call chains as described in Section 5. The
results of our benchmarks are based on the measurements
of 52,777 Binder transactions. Figure 8 presents the relative
overhead vs. the data payload of the transaction. The maxi-
mum overhead was 2.23% and this overhead decreased with
increasing payload size, where the memory copy operations
for the data buffer outweigh the call-chain operations. How-
ever, when taking the frequencies of different payload sizes
into consideration, the weighted average remains at 2.23%.
This small performance overhead is further illustrated in

Figure 9, which shows the cumulative frequency distribution
of the CPU cycles required for performing Binder transac-
tions in Scippa and stock Android. On average, transactions
on stock Android required 18,850 cycles and 99% of the
measured transactions required less than 115,000 cycles. On
Scippa this performance merely decreases to an average of
22,581.15 cycles per transaction, which translates to 18.82µs
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Figure 9: CDF of CPU cycles for Binder transactions on
Scippa and stock Android.

in our experimental setup, and 99% of the transactions re-
quired less than 130,000 cycles.
It should be noted that 0.58% of the measurements in our

data set were extreme outliers that were in the range of 3
to 5 magnitudes higher than the rest of the measurements.
These outliers occurred in both stock Android and Scippa
benchmarks. We could trace these outliers back to thread
blocking during parsing of the binder transaction header,
i.e., operations independent from our Scippa modifications.
However, since these rare outliers significantly distorted the
mean and the margin of error in our measurements, we
excluded them from the results presented here.
User space benchmark [4]. Since applications in Scippa

have to retrieve, parse, and set the received call-chain as part
of their Binder IPC thread operations (cf. Section 5), we
measured the overhead of Scippa from the application layer
perspective. To this end and to provide a better comparison
with existing work, we re-implemented the test cases pre-
sented in the closest related work Quire [4]. In this test, the
Service components of several test apps interact a) to pass a
message with variable size payload roundtrip between two
apps and b) to send a message without payload roundtrip
between multiple apps to build call-chains of different lengths.
Figure 10 presents the average performance per roundtrip

versus the message payload as computed from 11,000 mea-
surements per payload size. The payload size ranges from
0 bytes to 6,336 bytes in 64 bytes increments. In our data
set, Scippa imposed between 3.70-25.33% overhead, which
is comparable to Quire’s performance (21% slowdown).
Figure 11 shows the average performance per roundtrip

vs. the call-chain length with a max length of 9 (i.e., 10 apps
involved) and 11,000 measurements per length. Scippa’s
overhead is 12.70-26.73%, which is again comparable to Quire
(20-25% slowdown).

6.3 Binder IPC Provenance
In this section, we provide statistics on the call-chains

observed in Scippa during our tests and evaluate how well
these call-chains provide the necessary IPC provenance infor-
mation to efficiently mitigate the different attacks introduced
in our requirements analysis (cf. Section 4).
Call-chain Statistics. Table 1 summarizes statistics on

call-chains observed during our testing. All margins of error
are for a 95% confidence. We logged in total 54,670 call-
chains with an average length of 1.56. All chains had at least
two branches with 2.59 being the average number of branches
per chain. Figure 12 provides a breakdown of the branch
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Figure 12: Break down of observed
call-chain lengths.

General: Branching: Dispatching:
#Call-Chains: 54,670 #Chains with branches: 54,760 (100%) #Chains with dispatching: 3,237 (5.91%)
Chain length: 1.56 ± 0.01 #Branches (total): 141,330 #Dispatches (total): 24,966
Max. length: 13 #Branches (per chain): 2.59 ± 0.08 #Dispatches (per chain): 7.71 ± 1.92

Max. number of branches: 1,194 Max. number of dispatches: 2,784

Table 1: Call-chain statistics.

lengths and shows that the maximum observed length is 13
and that chains with a length of one are most frequent. The
max number of branches for one chain is 1,194. Additionally,
5.91% of all chains contained at least one dispatch between
an IPC thread and the Main Thread. On average, each
chain contained 7.71 dispatches with 2,784 being the highest
number of dispatches observed for one chain.
Attack mitigation. To verify that Scippa fulfills the

requirements stated in Section 4.2, we developed a set of
interacting test applications, which implement different com-
binations of inter-component communication that model the
scenarios that have been reported to be prone to attacks such
as confused deputy attacks [22] or Intent hijacking [2]. This
includes common inter-app communications such as starting
Activities, Broadcast Intents, or binding and calling Services
including IntentServices. In general, all called components
were able to retrieve the call-chain of the direct thread of
control that lead to their invocation and thus identify the
initiator of the call-chain. Also, all senders were success-
fully notified by the kernel module about finalized call-chain
branches. Based on this information, we were able to imple-
ment a per-UID access control that is more fine-grained and
flexible than Android’s static Permission system.
Since the most well-known reported confused deputy at-

tacks rely on Broadcast Receivers [22], we briefly elaborate
on call-chains for broadcast receivers in our testbed. Fig-
ure 13 shows an established call-chain for a single Broadcast
Intent send by the app with UID 10043 (lower left corner).
The Intent is sent to the ActivityManagerService as part of
the system server with UID 1000, where the task to send this
broadcast is dispatched to a dedicated thread (1000:403:777
→ 1000:403:420). This thread delivers the Broadcast Intent
in parallel to all dynamically registered receivers (upper left
rectangle) and in order3 to all receivers registered statically
through the applications’ manifests (lower right rectangle).
Each app receives the Intent via an IPC thread and process-

3Broadcast receivers registered through the manifest are
always served in ordered fashion, but intermediary receivers
only can stop further delivery when the ordered flag is set.

ing of the Intents by the Broadcast Receiver components is
dispatched to the apps’ Main Threads.
As a consequence, each Broadcast Receiver is able to re-

trieve the branch of the call-chain that lead to its invocation
and, hence, to identify the sender of the broadcast. For
instance, the receiver of UID 10047 retrieves the call-chain
10043 → 1000 and the receiver of UID 10045 retrieves the
chain 10043→ 1000→ 10044→ 1000 that shows all receivers
previous to itself in the ordered delivery. Using this infor-
mation, Broadcast Receivers in Scippa can now efficiently
evaluate their trust in received messages and their senders,
which allows them to react accordingly by, e.g., refusing to
accept spurious messages. In addition to our test cases, we
also verified that the privileged Broadcast Receiver that was
reported as a confused deputy in [22] is now able to identify
the broadcast Intent sender and hence to apply fine-grained
access control depending on the Intent payload (e.g., GPS
vs. Wi-Fi control commands). That eliminates the confused
deputy vulnerability without the need to split its component
interface or to introduce new permissions.
Additionally, the sender received from the kernel mod-

ule four BR_CALLCHAIN notifications about the call-chain
branches that ended with the apps with UIDs 10045 through
10048. Thus, the sender is able to identify the receivers of its
broadcast and to determine if its broadcast was potentially
hijacked by an unintended receiver [2]. In case of ordered
broadcasts, it can even determine which app was responsible
for cancelling the further delivery of the broadcast.

6.4 Discussion and Limitations
The most important limitation for the effectiveness of our

approach is that the call-chain can be lost if communication
between threads occurs over channels currently not covered
by Scippa. With message dispatching, Scippa covers one of
the major communication channels between Android applica-
tion threads, but other channels exist (e.g., notify). Future
work has to address these channels through extensions to
the Dalvik VM and Java language classes in the Android
framework. For instance, initial experiments have shown
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Figure 13: Call-chain for parallel and ordered broadcasts.

that it is possible to forward the call-chain to newly spawned
threads, e.g., for IntentService components or AsyncTasks.
Similarly, Scippa currently only covers direct control flows

for ICC. Hence, indirect control flows are an open problem.
Providing an efficient solution to address indirect control
flows is an orthogonal problem and affects other approaches
such as dynamic taint-tracking [6] as well.
Since our solution relies on code within the app sandboxes

to forward call-chains on message dispatching, this code base
is prone to attacks by malicious apps. While forging and
modifying call-chains can be prevented by implementing a
token-based approach (cf. Section 5.4), the deliberate drop-
ping of call-chains cannot be prevented. However, because
UIDs are attached by the kernel to the call-chains during the
sending of IPC calls, a malicious app can only hide previous
hops in the call-chain but not itself. Thus, a malicious app
cannot fool a receiver into trusting it by hiding its predeces-
sors in the call-chain [4] and this is primarily a problem if
multiple malicious apps collude [16, 24, 1].

7. RELATED WORK
IPC-based domain isolation. Thread-migrating IPC

has been used in high-assurance systems [15, 28, 26] as build-
ing block for domain-based isolation by factoring applications
into smaller domains. Domains are usually compartmen-
talized at process boundaries and IPC is used to connect
them. The security of IPC has been investigated from dif-
ferent angles, e.g., for synchronous IPC [27] or language-
based security [9]. Android’s design borrows ideas from this
literature (e.g., UID-based app sandboxes, connected via
thread-migrating IPC). However, in this paper we identi-
fied and addressed misaligned security assumptions when
Inter-Component Communication is built on top of IPC.
Provenance frameworks. Establishing provenance in-

formation has been primarily investigated for data prove-
nance [29, 17] and in distributed systems [30]. Specific to
smartphones, the SPADE framework [10] has been ported to
Android [13]. It uses the Binder debug interfaces to profile
the IPC on Android and generate useful traces for device
auditing. Scippa provides very similar information, however,
in contrast to SPADE on Android, Scippa also provides the
links between IPC channels along direct ICC control flows
and thus valuable information for a more detailed auditing.
A recent approach called EPIC [21] uses static analysis

to detect all potential Intent-based communication channels

between application components. The information created
by Scippa includes this information as well. However, Scippa
only reflects actual runtime behavior. A combination of these
two approaches could lead to a more comprehensive app
testing, in which static analysis shows all potential channels
and Scippa fills the gaps in this analysis (e.g., when a target
cannot be resolved statically).
Android security. Research has established a large body

of literature on Android security. With respect to preventing
confused deputy attacks, related work [22] has proposed the
poli-instantiation of apps in ICC to reduce the callee’s priv-
ileges to the ones of their caller. XManDroid [1] monitors
all ICC communication and applies at runtime Chinese Wall
security policies to prevent communication that could lead to
a dangerous information flow. While poli-instantiation and
XManDroid rely on strictly restricting privileges or communi-
cation channels, Scippa and closely related work (Quire [4])
rely on provisioning IPC provenance information to callees to
enable them to apply fine-grained access control on their ICC
interfaces. This allows them to securely provide APIs to other
apps. In contrast to Scippa, however, Quire’s prototypical
implementation requires developers to explicitly extend all
Stub and Proxy interfaces in order to construct call-chains.
Scippa abstains from a developer-centric approach for es-
tablishing IPC provenance information and implements a
system-centric solution that builds call-chains transparently
to developers. Moreover, in Quire’s developer-centric ap-
proach, call-chains are created and extended within the app
code and, hence, this approach requires verifiable statements
to establish trust in and authenticity of chains. In Scippa,
the kernel creates and extends the call-chains and only when
chains are propagated through the user-space back to the
kernel, a lightweight cryptographic mechanism (e.g., tokens)
is required to ensure authenticity of chains. Additionally, as
a kernel-based solution, Scippa covers even cases in which
apps do not use Stubs, but instead app code (e.g., native
libs) communicates directly with the Binder kernel module.
Besides confused deputy attacks, related work has pro-

posed a solution [14] to mitigate Intent hijacking by applying
heuristics-based access control for Intents to prevent their
unintended delivery. While this is a system-centric, preven-
tive security extension, Scippa provides a different trade-off.
Scippa adds measures that allow an application to detect
(not prevent) such attacks, but in turn provides a higher
precision than heuristics due to its call-chain information.
Information flow control. Concepts from decentralized

information flow control [20, 19], e.g., as implemented in
the DEFCON [18] and Asbestos [5] operating systems, have
been applied within different solutions on Android. Most
prominent solutions based on dynamic taint analysis include
TaintDroid [6], AppFence [12], and Paranoid Android [23].
In contrast, Scippa does not aim at restricting information
flows of sensitive data at information sinks, but instead aims
at providing apps with IPC provenance information that
enables them to effectively apply access control for sensitive
data and functionality.

8. CONCLUSION
In this paper, we presented Scippa, our architecture for

provisioning Binder IPC provenance information on Android.
It allows app components to identify the sending app of
incoming IPC messages despite indirections and message dis-
patching. Using this provenance information, apps are now



able to effectively apply per-sender access control to their
interfaces. In contrast to related work, Scippa constitutes a
system-centric approach that directly addresses conceptual
shortcomings in Android’s multi-layered inter-application
communication. We presented an implementation of Scippa
based for Android v4.2.2 and the evaluation of our proto-
type showed that Scippa imposes only minimal overhead
when compared to stock Android. In addition, we deem the
lessons learned from Scippa valuable for the design of future
multi-layered OS security architectures that rely on thread-
migration and that support liberal inter-app communication.
The source code of Scippa can be retrieved from http:

//infsec.cs.uni-saarland.de/projects/scippa/.
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