
R-Droid: Leveraging Android App Analysis
with Static Slice Optimization

Invited Paper

Michael Backes
CISPA, Saarland University & MPI-SWS

backes@cs.uni-saarland.de

Sven Bugiel, Erik Derr,
Sebastian Gerling, Christian Hammer

CISPA, Saarland University
{bugiel,derr,sgerling,hammer}@cs.uni-

saarland.de

Abstract
Today’s feature-rich smartphone apps intensively rely on
access to highly sensitive (personal) data. This puts the
user’s privacy at risk of being violated by overly curious
apps or libraries (like advertisements). Central app markets
conceptually represent a first line of defense against such
invasions of the user’s privacy, but unfortunately we are still
lacking full support for automatic analysis of apps’ internal
data flows and supporting analysts in statically assessing
apps’ behavior.
In this paper we present a novel slice-optimization ap-

proach to leverage static analysis of Android applications.
Building on top of precise application lifecycle models, we
employ a slicing-based analysis to generate data-dependent
statements for arbitrary points of interest in an application.
As a result of our optimization, the produced slices are, on
average, 49% smaller than standard slices, thus facilitating
code understanding and result validation by security analysts.
Moreover, by re-targeting strings, our approach enables auto-
matic assessments for a larger number of use-cases than prior
work. We consolidate our improvements on statically analyz-
ing Android apps into a tool called R-Droid and conducted
a large-scale data-leak analysis on a set of 22,700 Android
apps from Google Play. R-Droid managed to identify a
significantly larger set of potential privacy-violating informa-
tion flows than previous work, including 2,157 sensitive flows
of password-flagged UI widgets in 256 distinct apps.

1. INTRODUCTION
Modern smartphone apps offer an abundance of features

that request from users access to the users’ highly sensitive,
personal data. The wide proliferation of these apps has
made them a prime target for malware developers, and the
variety of reported privacy incidents has fueled the legitimate
privacy concerns of end users that their sensitive data is
stealthily collected, monetized, and disseminated [20, 1, 15,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASIA CCS ’16, May 30-June 03, 2016, Xi’an, China
© 2016 ACM. ISBN 978-1-4503-4233-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897845.2897927

30]. Centralized app markets have responded by trying to
identify malicious and overly curious applications even before
these apps are deployed on a user’s smartphone. To this
end, they strive for comprehensive application vetting to
understand app internals and to thereby identify abnormal
app behaviours.
Static analysis of apps is widely accepted as a well-suited,

automated concept for application security vetting on a large
scale. In the context of Android, prior work has already suc-
cessfully identified particular security and privacy problems
like (user-intended) privacy leak detection [23, 17, 44, 43,
42], component hijacking vulnerability detection [29], and
misuses of (framework) features such as the crypto API [14]
or dynamic code loading [36], to name a few.
All these approaches share the common goal to precisely

capture which data flows into security- and privacy-sensitive
method calls. Unfortunately, existing static analysis ap-
proaches are (fully or partially) agnostic to the concrete data
values that arise during execution of an app (i.e., strings or
primitive values) and that can make a crucial difference in
assessing an app as being harmless or dangerous to the users’
privacy. For instance, the concrete value for a receiver num-
ber in a text-message app tells apart a legitimate app from
one that sends premium SMS messages. Some approaches
have considered this problem of statically recovering concrete
runtime values, but are currently limited to coarse-grained
approximations for runtime strings [34, 23, 9, 10], which
results in conservative approximations (“could be any string”,
or “any combination of these strings”) in more evolved cases.
As a consequence of this limitation, they face many false
positives (i.e. false alarms) and are not suitable for assessing
certain evolved cases at all (see Section 3.)
Moreover, an aspect that has received little attention so

far is that any static analysis always requires a significant
amount of manual investigation either to validate the results
or to understand how data is processed within the application
code. However, manually investigating the outputs of existing
approaches even for simpler cases—typically a huge list of
data-dependent statements and an involved kind of formal
security assessments—typically constitutes an intricate task,
since existing tools either work with the app’s bytecode [23,
36] or transform it into an intermediate representation [7, 42,
29, 17] that is usually even less amenable to manual review
than the original source code. As a consequence, the efforts
for a human analyst in validating and assessing the results
of current analysis solutions are significant.

http://dx.doi.org/10.1145/2897845.2897927

Our contributions. To address the aforementioned chal-
lenges, we present a novel slice optimization approach to
facilitate privacy- and security assessments on Android ap-
plications. Our approach relies on a standard slicing-based
analysis to generate data-dependent statements for arbitrary
points of interest in an application. While existing app anal-
ysis approaches already assess apps based on those early
results, our analysis proceeds by further optimizing the slices
statically. Our optimization offers the following benefits:
1. We provide a general purpose value analysis to precisely
reconstruct values/strings to ease (semi-)automatic checks
for more evolved security assessment tasks. 2. Our optimiza-
tion pipeline statically transforms slices into semantically-
equivalent, concise slices. This improves readability and
reduces the number of false positives, a major benefit for an
efficient reviewing process. The optimized slices can subse-
quently be further assessed by distinct security modules that
create additional insights about sensitive data flows within
the application and that facilitate manual app reviewing.
Technically, we make the following three contributions:

1. Novel slice optimization approach. We start by leveraging
a system dependency graph (SDG) that distinguishes differ-
ent objects of the same type (object sensitivity), fields of the
same object (field sensitivity), calling contexts of invoked
methods (context sensitivity), and definitions of the same
local variable on different paths through a method (flow
sensitivity.) We add a comprehensive application lifecycle
model to faithfully take Android’s peculiarities into account.
On top of a slicing-based dependency analysis, we propose a
novel slice optimization approach that, on a high level, con-
stitutes a use-def tracker to eliminate spurious dependences
that the data-dependency analysis failed to resolve and a
comprehensive value analysis to re-assemble strings and prim-
itive values that are passed as parameters to security-relevant
functions. To this end, we adopt optimization techniques
from partial evaluation, domain knowledge and copy propa-
gation to receive concise and semantically-equivalent slices
with a low number of statements. As a result we receive
optimized slices that are about 50% smaller than the original
slices, making any subsequent manual reviewing task more
efficient. Moreover, more evolved security problems such as
premium number assessment (see Section 3) can be evaluated
automatically due to our value analysis.

2. Complementary Analysis via Security Modules. Our ap-
proach supports the integration of further security modules
to extend and amplify the analysis of apps’ w.r.t. user’s secu-
rity and privacy. Security modules define their own data flow
sources/sinks and receive the optimizated slices to perform
security assessments. In this paper, we realize three such
security modules—data leakage detection, user input propa-
gation, and slice rendering for manual code review—that we
used for our large-scale evaluation of Google Play apps.

3. R-Droid and Large-scale Evaluation on Google Play. We
consolidate all aforementioned features into a tool called R-
Droid. The evaluation of R-Droid on the widely accepted,
open-source testsuite DroidBench excels over related work [7,
42] with nearly optimal results: 97% precision (one false
alarm) and no missed violation. In a large-scale evaluation
of 22,700 apps from Google Play, R-Droid managed to iden-
tify a significantly larger set of potential privacy-violating
information flows than previous work, including 2,157 sen-
sitive flows of password-flagged UI widgets in 256 distinct

apps. Finally, we demonstrate the effectiveness of our ap-
proach on manual code reviewing on the common use-case
of understanding malware behavior.

2. RELATED WORK
Improving Android’s security has received a lot of atten-

tion in the security community. Over the last years, a larger
number of analysis frameworks was published with a focus
on information-flow aspects such sensitive data/user input
leakage. Table 1 shows a high-level feature comparison of
static analysis frameworks on Android sorted by publica-
tion year in ascending order. For the sake of simplicity we
distinguish feature support in three categories: 3 = compre-
hensive/sophisticated, l = basic, and 8 = no support.
Most related work [9, 26, 29, 42, 18] performs a data-

dependency analysis on top of an application lifecycle model.
While this is sufficient for binary assessments, e.g. is there
a dependency between a source and a sink statement, more
complex problems like reconstructing values/strings passed
to an API call require a detailed list of dependent statements.
Moreover, such data does not necessarily have to be derived
from an API call (see premium SMS example in Section 3).
Similar use-cases such as API (mis-)use [36, 35, 16, 14] in
which the concrete (string) data needs to be assessed can
not efficiently be processed by forward approaches, since any
string has to be marked as source. In contrast, our backward
slicing approach fulfills the requirements to conceptually
handle all of these problems.
Table 1 shows an evolution in terms of supported features.

The foundation of a static analysis is a comprehensive data
model that precisely approximates Android’s runtime be-
havior. Chex [29] was the first tool to take the different
types of application entry points into account. FlowDroid [7]
improved on this by introducing accurate per-component
lifecycle models that were also adopted by AmanDroid [42].
R-Droid follows prior work and additionally adds models
for frequently used classes to further refine the static lifecycle
model. To keep the analysis complexity tractable almost all
approaches manually model parts of the semantics of the
framework API instead of adding the full framework code
base to the analysis scope. DroidSafe [18] proposed a new
technique to abstract from the framework complexity while
still keeping all data-dependences. R-Droid adopts this
model to not rely on incomplete knowledge about the frame-
work API. A dedicated line of work focused on Android’s
inter-component communication (ICC) either as standalone
approach [34, 33] or as part of an analysis framework [9, 27,
42]. While tracking data-flows across components clearly
increases the precision of the overall analysis, our privacy
leak evaluation (cf., Section 7) showed that such flows rarely
occur in real-world apps.

String analysis. Most of the aforementioned work on API
usage analysis as well as first works on ICC resolution [34]
resort to rather limited constant propagation approaches
tailored to one specific use-case. SCanDroid [9] resolves ICC
receivers by implementing a constraint system to track values
across instructions. String values are approximated by con-
structing a subgraph that includes StringBuilder operations.
Flow solver algorithms then compute feasible string prefixes
that flow into ICC-related calls. Christensen et al. [11] pro-
pose the Java String Analyzer (JSA) to statically check the
syntax of dynamically generated expressions like SQL queries.

SCanDroid Scandal AndroidLeaks LeakMiner Chex FlowDroid AmanDroid DroidSafe R-Droid
[9] [26] [17] [43] [29] [7] [42] [18]

Ap
pr
oa
ch Framework used WALA custom WALA Soot WALA Soot custom Soot JOANA

Fwd/Bwd analysis — Fwd Fwd Fwd — Fwd Fwd Fwd Bwd
Analysis approach Data-Dep (DD) DD Slicing Tainting DD Tainting DD DD Slicing
String analysis l l 8 8 8 8 l l 3

Fe
at
ur
es

Apk parsing 3 3 3 3 3 3 3 3 3

Lifecycle modelling l l l l l 3 3 l 3

Framework modelling l l l l l l l 3 3

ICC support 3 8 8 8 8 3 3 3 8

Concurrency l 8 8 8 3 3 8 3 3

Reflection 8 l 8 8 8 l 8 8 8

Native code 8 8 8 8 8 8 8 8 8

3 = comprehensive/sophisticated support, l = basic support, 8 = no support

Table 1: High-level feature comparison of static analysis frameworks and extensions for Android.
Frameworks sorted by publication year in ascending order.

Dedicated flow-graphs for string operations are translated
into context-free grammars to infer possible string values.
DroidSafe uses JSA to resolve ICC. The IC3 project [33] is
the closest related approach to our value analysis. They em-
ploy context-sensitive, inter-procedural composite constant
propagation that can handle field correlations of complex
objects. To describe the semantics of the Android API (we
refer to this as expert knowledge) they devised a declara-
tive language and use a constraint solver to output possible
string values. Similarly, our value analysis uses inferred ex-
pert knowledge, but, in contrast, our approach is also object-
and path-sensitive. Since our multi-stage value analysis is
not restricted to strings, even complex propagation prob-
lems such as adding values to arrays/lists with subsequent
retrieval via index calculations is possible.
Statically resolving string values is also highly relevant

beyond Android. Automata-based approaches for string
analysis exist to verify SQL expressions [39] or for finding
string-related security vulnerabilities in PHP programs [45,
46]. Tateishi et al. [40] apply path- and index-sensitive string
analysis to verify Cross-Site-Scripting (XSS) sanitizers for
web applications based on monadic second-order logic (M2L).
They verify that generated strings satisfy a given constraint
rather than assembling concrete values like R-Droid does.
String solvers have recently also been integrated into SMT
solvers [41, 28, 47]. These solvers determine whether a certain
string can be produced by a program (e.g. whether a XSS
attack is possible). In contrast, R-Droid determines which
concrete strings can be created in an app.

Manual analysis support. Dedicated support for manual
analysis has been largely disregarded by related work so far.
Static analyses always underlie manual reviewing to a certain
extent, either to validate the results or to understand how
data is processed. Eliminating the number of false positives,
e.g. by refining the static runtime model, is a first but in-
sufficient step towards an efficient reviewing process. While
many frameworks only provide binary information about
security assessments, others at least provide complementary
information like code location or a list of tainted/sliced in-
structions. Approaches that disassemble [3] or decompile the
application [32] provide readable high-level, but untargeted,
output. Instead, R-Droid produces semantically-equivalent,
small-sized output that can be fed into our code rendering
module to provide similar readable, but targeted output.

1 public class MainActivity extends Activity {
2 protected void onCreate(Bundle savedInstanceState) {
3 String val1 = "10";
4 int val2 = 66953930;
5 if (Math.random() > 0.5d) {
6 val1 = "106618";
7 val2 = getValue();
8 }
9 SmsManager sm = SmsManager.getDefault();

10 sm.sendTextMessage(val1+val2, null, "95pAHD", null,
null);

11 }
12 private int getValue() { return 5829; }
13 }

Listing 1: Premium SMS example

3. MOTIVATING EXAMPLE
We start with the illustrative example of premium number

classification—a major monetization factor of malware—to
demonstrate why current data leak detection and reachabil-
ity analyses are insufficient for a faithful security analysis of
Android apps. The example is depicted in Listing 1 as a code
excerpt for sending premium SMS that many Android SMS
malware variants rely on [48]. In line 10, an SMS with acti-
vation code 95pAHD is sent (without user interaction) once
the MainActivity is displayed. The premium receiver number
is selected randomly and assembled via string concatenation,
which constitutes a simplistic form of obfuscation.
Existing approaches based on static analysis do not re-

solve the concrete values for the receiver number of the text
message (SMS), for different reasons. Forward analysis ap-
proaches [26, 43, 7, 17, 42, 18] rely on sensitive sources to
execute their analysis, none of which are present in this ex-
ample. Backward analyses approaches do not resolve the
concrete numbers as well: approaches tailored to data leak de-
tection [7, 42] do not flag this example as critical, due to the
absence of sensitive information; basic string analyses [23, 9,
34] are either limited to constants and/or lack path-sensivity.
Heuristic approaches simply retrieve string values from the
bytecode and combine them in various ways to determine
meaningful combinations. This will miss the implicit conver-
sion of val2, an integer variable, to a string during concate-
nation; internally, this constitutes a StringBuilder.append
call. Moreover, intra-procedural approaches [23] do not ap-
propriately capture the number 5829, which is returned by
the method call getValue (it is a potential value as well,
since it is implicitly converted to a string). Moreover, even
if all values can be identified, existing analyses do not deter-

APK File Parser

Static Slice Optimization
Application

Manifest Parser

A

B C

D E

SDG Builder

Analysis phasePre-processing phase

Dex Bytecode Parser

XML Layout File Parser

Android Lifecycle Generator

Security Modules

User Input
Propagation Analysis

Slice
Rendering

Data Leak
Detection

other
Analysis

Sinks specification

Path recovery

Value Analysis

optimized
slices

slices

Data-dependence Slicer

Use-Def Tracking

Figure 1: High-level architecture of R-Droid

mine which values are possible on which path. The common
remedy is to enumerate all possible combinations of the
identified strings, introducing false positives. In a nutshell,
a path-sensitive value analysis is essential for determining
the actual numbers 1066953930 and 1066185829, which can
in practice be compared against lists of known premium
numbers.

4. ANALYSIS FRAMEWORK
The high-level architecture of our R-Droid is depicted in

Figure 1. It comprises a pre-processing phase in which it col-
lects application meta-data and generates a comprehensive
application lifecycle model (cf. Section 4.2) that is subse-
quently used to create a system-dependence graph (SDG).
For the analysis we leverage a standard (backward) data-
dependence slicer. It takes an arbitrary list of sinks (in terms
of method signatures) as input to capture data that may
influence these statements. The output is post-processed by
our optimization pipeline to obtain semantically equivalent
slices with a low number of statements and a lower number
of false positives. These optimized slices can then be fed
into customized security modules, e.g. for privacy leak or
input propagation analysis. The implementation of R-Droid
(blue colored boxes) comprises approximately 11.5 kLOC,
including code for the three security modules.

4.1 Pre-processing Phase
We start by extracting information included in the appli-

cation package and analyze the manifest file that, among
others, declares the apps’ components and meta-data like the
requested permissions, as well as layout files containing UI de-
scriptions. To generate app data models, R-Droid leverages
the information flow control (IFC) framework JOANA [22,
21]. Its frontend includes the analysis framework WALA [2],
that offers an intermediate-representation (IR) in static-
single assignment (SSA) form [4, 38]. Their Dalvik frontend,
adopted from SCanDroid [9], transforms Android bytecode di-
rectly into WALA’s IR. We generate bytecode using dexlib [3]
to model a static application lifecycle model for each app that
takes the Android peculiarities into account.1 The lifecycle-
enhanced app bytecode is subsequently used by JOANA to
generate an object-, context- and field-sensitive SDG. The
SDG contains intra- and inter-procedural data- and control-
dependencies (also for exceptions) as well as object-sensitive
points-to information to resolve dynamic dispatch. To keep
1WALA’s immutable IR precludes direct altering

1 public class DataLeakage extends Activity {
2 private String deviceId;
3 protected void onCreate(Bundle savedInstanceState) {
4 new ATask().execute();
5 }
6 protected void onPause() {
7 deviceId = "fakeId";
8 }
9 // Button.onClick callback handler defined in XML file

10 public void leakId(View view) throws IOException {
11 File dir = Environment.getExternalStorageDirectory();
12 FileWriter writer = new FileWriter(dir);
13 writer.write("Device ID: " + deviceId);
14 writer.close();
15 }
16 private class ATask extends AsyncTask<Void,Void,String>{
17 protected String doInBackground(Void... params) {
18 TelephonyManager tm = (TelephonyManager)
19 getSystemService(Context.TELEPHONY_SERVICE);
20 return tm.getDeviceId();
21 }
22 protected void onPostExecute(String result) {
23 deviceId = result; }
24 }
25 }

Listing 2: Android lifecycle example

the complexity of the overall data structure tractable we do
not include the full framework code. Instead, we use the
light-weight framework model of the DroidSafe [18] project
to capture data-dependencies within the framework.

4.2 Android Lifecycle Modeling
Android apps adhere to a complex event-driven appli-

cation lifecycle that challenges static analysis approaches.
Applications consist of multiple components that are asyn-
chronously triggered by events, or launched (and stopped)
by user interaction. Each of these components maintains its
individual lifecycle with predefined callback methods that
are implicitly invoked by the runtime environment. De-
velopers override these callback methods such as onCreate
or onPause (cf. Listing 2) to initialize data structures, to
save an app’s state before closing it or switching it into the
background. Moreover, event-listeners can be registered for
services (e.g. location events are triggered whenever the de-
vice’s location changes) or UI-events (e.g. the button-click
handler leakId.)
To build an accurate lifecycle model, R-Droid starts by

adopting the entry point discovery algorithm from [29]. Us-
ing the entry points discovered in the app’s manifest file
and the overridden component callbacks, R-Droid builds a
callgraph and performs a code reachability analysis in order
to identify new entry points—registered event-listeners and
overridden framework methods. This process is repeated
until convergence, i.e., until the entry point set reaches a
fixed point. To improve precision over permitting lifecycle
callbacks to be called in arbitrary order, R-Droid follows
prior work [7, 42] and models individual component lifecycle
methods that exploit the partial callback ordering. The re-
sulting per-component models contain fewer invalid paths,
which amends the precision of our subsequent analysis.

Finally, we generate a synthetic main method to connect
the individual lifecycle methods. This method serves as sin-
gle entry point for the analysis and mimics the initialization
routine of an app that is executed on a real device. Con-
cretely, the static class initializers are invoked first, with
ContentProviders being the first components created dur-
ing application launch [12]. After that, custom application
classes are invoked following the order provided by the class

hierarchy. Finally, all other components can be executed in
any order.
During our experiments we found the resulting model

can be further extended by adding accurate lifecycles for
additional, frequently used, components: Fragments and
Android’s special threading class AsyncTask including pa-
rameter passing. These integral features either have not
been considered by prior work or have been coarsely mod-
eled, which results in false positives during analysis, i.e.,
invalid paths.

4.2.1 Fragment Lifecycle
Android 3.0 introduced fragments as a design pattern to

support more dynamic and flexible UI designs, which became
imperative with the increasing number of tablets. Fragments
can be classified as reusable sub-components of activities with
a dedicated code base and an optional user interface. They
maintain an individual lifecycle, receive input events, and
can dynamically be added to and removed from a running
activity via a FragmentManager object.
Fragments require a host Activity (FragmentActivity)

for their execution. Similar to callbacks, fragments can
either be statically added to the UI of an activity (via
layout descriptions), or added/removed dynamically via
FragmentTransactions. While parsing the layout files for
Fragment declarations is straightforward, determining the
concrete types in transactions requires points-to informa-
tion. R-Droid generates this information along with the
callgraph for the basic lifecycle model. As output we receive
a one-to-many mapping from Activity to Fragments. Event-
handling for fragments is analogous to activities except for
one case: Callbacks registered in a layout resource do not
necessarily have to be declared in the fragment or in one of
its inner classes, but can also be declared in its host activ-
ity. Identified callbacks can be discharged in arbitrary order
while the fragment is running. For each identified Fragment
R-Droid generates a lifecycle method in accordance to the
official documentation [5] and subsequently adds it to the
callback body of its host activity while active.

4.2.2 Modeling AsyncTask
Android’s application model imposes very strict response

times on application components and forces developers to
off-load potentially long-running code into separate threads.
Apart from Java’s default packages like java.util.concurrent,
the Android SDK provides a dedicated thread class (AsyncTask)
for outsourcing such code into background tasks (e.g., to
download a file from the Internet) and feeding results back
to the originating thread (e.g., as a progress monitor). Simi-
lar to Fragments, AsyncTasks are increasingly used by app
developers (in our large-scale app evaluation we found 62.7%
of 22,700 apps to include at least one AsyncTask). Hence a
correct model of this feature is mandatory for static analyses
to avoid false positives in this component.
In contrast to Java’s Thread class that contains a single

thread entry method (run), AsyncTask features a series of
callbacks that are discharged in a specific order once its
execute command is invoked. To precisely model this be-
havior (including data passing between these callbacks) we
propose the AsyncTask lifecycle depicted in Figure 2.
An AsyncTask is specified by three generic types, i.e.

AsyncTask<Params,Progress,Result> that are used as ar-
gument and return types of its callback methods. If a task

void onPreExecute()

RS doInBackground(PA... params) {
 [...]
 publishProgress(PG... values);
 [...]
}

void onPostExecute(RS result) void onCancelled(RS result)

void onProgressUpdate(PG... values)

new AsyncTask<Params PA, Progress PG, Result RS>().execute(PA... params)

control-flow

value-passing

Figure 2: AsyncTask lifecycle

is triggered, the onPreExecute method is executed to set
the task up. After that, the doInBackground method ex-
ecutes in a background thread to realize the main func-
tionality. This method takes a varargs argument, basically
corresponding to syntactic sugar for an array. Its return
value is passed to the callback methods onPostExecute or
onCancel, depending on whether or not the task was can-
celled. While the doInBackground method is executed, the
method publishProgress can be invoked with a varargs ar-
gument that then triggers the callback onProgressUpdate
with the same argument. R-Droid automatically iden-
tifies the concrete types for the generic parameter types
(<Void,Void,String> in Listing 2) and generates a tailored
lifecycle method to reflect this behavior. For analysis pur-
poses, this lifecycle method is used instead of the framework’s
execute method.
Array arguments in callbacks constitute another challenge

for static analysis. Section 5.2 explains in detail how R-
Droid resolves them as part of its value analysis. To the
best of our knowledge, we are the first to generate a com-
prehensive model of multi-threading in Android, including
the complex and prevalently used AsyncTask lifecycle with
precise parameter passing.

5. SLICE OPTIMIZATION
Many related apporaches [9, 26, 17, 43, 7, 42, 18] are

essentially tailored to kinds of privacy leak detection, i.e., de-
tecting whether there is some flow/data-dependence between
sensitive sources and sinks. Others, focus on specialized
forms of API usage [36, 35, 16, 14] which usually requires a
precise reconstruction of values/strings for (semi-)automatic
assessment. All these app vetting approaches underlie man-
ual reviewing for result validation due to the absence of a
ground truth. None of these tools provides dedicated support
to facilitate such a reviewing process.
Hence, we propose a new slice optimization with the follow-

ing benefits: 1. We provide a general purpose value analysis
to precisely reconstruct values/strings to ease (semi-) auto-
matic security checks. 2. Our optimization pipeline statically
transforms slices into semantically-equivalent, concise slices.
This improves readability and reduces the number of false
positives, a major requirement for an efficient reviewing
process.
Our slice optimization pipeline is designed as multi-stage

post-processing technique. Given a standard data-dependence
slice generated by JOANA, R-Droid first applies def-use
tracking to eliminate spurious dependences. Then, the value
analysis is applied until convergence, i.e., no more optimiza-

1 java.io.FileWriter→write{v6}(v16)
2 java.io.FileWriter→<init>{v6}(v4)
3 v6 = new java.io.FileWriter
4 v4 = android.os.Environment→getExternalStorageDirectory()
5 v16 = java.lang.StringBuilder→toString{v13}()
6 v13 = java.lang.StringBuilder→append{v8}(v11)
7 java.lang.StringBuilder→<init>{v8}("Device ID: ")
8 v8 = new java.lang.StringBuilder
9 v11 = DataLeakage{this}.deviceId

10 DataLeakage{this}.deviceId = "fakeId"
11 DataLeakage{this}.deviceId = p1
12 Entry DataLeakage$ATask.onPostExecute(java.lang.String)V
13 DataLeakage$ATask.onPostExecute{this}(v3)
14 v3 = DataLeakage$ATask.doInBackground{this}()
15 return v12
16 v12 = ..telephony.TelephonyManager→getDeviceId{v8}()
17 v8 = DataLeakage→getSystemService{v2}("phone")
18 v2 = DataLeakage$ATask{this}.this$0

Output 1: Control-flow ordered slice of DataLeakage
example after use-def tracking

tions can be applied. To allow for more aggressive opti-
mization and value retargeting, R-Droid tries to recover
execution paths within the slice to re-apply the optimizations
on each path on success.

5.1 Use-def Tracking
Traditional SDG-based slicing approaches [24] result in

flow-insensitive slices. However, as illustrated in Listing 1,
flow and path information is essential to recreate exact values
for automatic security assessments. Moreover, the resulting
slices might contain spurious dependences, i.e., statements
that do not directly influence arguments of the sink. This is
because the slicer resolves data-dependencies for complete
statements (such as method calls) and not for subsets of argu-
ments. This usually leads to large slices and may additionally
introduce false-positives.
We therefore conduct, as first optimization step, a use-

def analysis on the resulting slices. Starting from the sink
statement we iteratively backtrack register and field refer-
ences and add defining and dependended statements to the
result. To this end, we leverage WALA’s SSA-based IR, in
which use-def chains are explicit, i.e., for each use there is ex-
actly one definition. We add flow-sensitivity by ordering the
statements in reverse control-flow order. While backtrack-
ing explicitly adds flow-sensitivity for defining statements,
statements such as multiple calls on the same object can
be ordered using flow information obtained by control-flow
graphs (CFGs) of the enclosing methods (cf., list operations
in Output 3). The resulting slices are more concise and
readable since non-relevant statements have been eliminated.
Output 1 shows the slice of the DataLeakage example

in Listing 2 after use-def tracking. Beginning at the sink,
i.e., the write method (line 1), data-dependent statements
are iteratively added in reverse-control flow order. An Entry
meta statement (line 12) is added as the second field assign-
ment depends on the parameter p1 of the onPostExecute
method. The string written to the SD card is assembled via
a series of invocations on a StringBuilder object (lines 5-8).
Its value depends on the field deviceId, that can have two
values depending on the actual activity state: either the con-
stant string fakeId (line 10) or the actual device id accessed
(line 16) in a new instance of the AsyncTask class ATask.

5.2 Value Analysis
Our value analysis (generalized string analysis) statically

simplifies complex expressions and re-assembles strings be-

yond constant values. It currently comprises four optimiza-
tion steps that leverage techniques from partial evaluation,
domain knowledge, and copy propagation. Execution path
recovery is performed whenever possible to allow more aggres-
sive optimization. The optimization pipeline is iteratively
applied until convergence, i.e. until no more slice statements
are modified. The outcome are semantically equivalent slices
that contain fewer but more expressive instructions (due
to retargeted strings and values). These optimized slices
ease manual reviewing and allow a larger range of security
assessments to be performed (semi-)automatically.

Copy propagation. We adopt WALA’s copy propagation
to eliminate assignment statements (that may occur as result
of the other optimizations) and copy constants/registers
directly to the statements in which they are used. This also
applies to values stored in and later retrieved from class
fields. Moreover, R-Droid eliminates function calls that
return constant values/references, such as getter methods.

Evaluating unary/binary operations. This step stati-
cally evaluates unary and binary operations. Further opti-
mizations like resolving indices for array and lists depend on
this phase. R-Droid uses points-to information to determine
the type of an operation such as int or double. We then
statically calculate such operations iff the operand values
are constants or can be iteratively resolved, e.g., an integer
addition x = 17 + 23 is evaluated to x = 40. Static resolution
fails if at least one operand is non-constant, e.g., the result
of a framework call to Math.round(). In this case we cannot
simplify the slice without expert knowledge.

Array access resolution. Related work on Android [23,
17, 43, 7, 42, 18] usually cannot precisely resolve array indices
and thus over-approximates array modifications. This does
not only reduce precision but also results in false alarms
when sensitive data is written at position x but is later
leaked from position y. Albeit challenging, resolving array
access statically significantly improves the precision of the
analysis. This particularly applies to the AsyncTask array
parameter as described in Section 4.2.2.

R-Droid can accurately resolve array access: Based on
its control-flow ordered list of array update instructions for
every execution path, it statically reconstructs the content
for each access and resolves the respective index. Three
outcomes are possible:

1. If the access index i is statically computable and the
data can be unambiguously determined at position
i, then R-Droid can precise determine the accessed
content: it discards the array instructions and replaces
them with the value at position i.

2. If the access index is statically computable but this
position can contain different data at the time of the
access, R-Droid returns a list of possible values.2

3. If the index is not statically computable, R-Droid
returns a template defining how the index is computed
and a string representation of the reconstructed array.
In case domain knowledge or a human expert cannot
resolve this access further, all possible values must
conservatively be considered in a subsequent security
analysis.

2This may happen if the array is both updated with statically
computable and non-computable indexes.

1 v27 = v8[v25]
2 v8["4"] = "no taint"
3 v8["5"] = v16
4 v16 = ..telephony.TelephonyManager→getDeviceId{v3}()
5 v25 = de.ecspride.ArrayAccess2→calculateIndex{this}()
6 return v10
7 v10 = v8 + "4 l"
8 v8 = v6 % "10 l"
9 v6 = v4 ∗ "5 l"

10 v4 = "1" + "1 l"

Output 2: Partial, cf-ordered slice of ArrayAccess2

Output 2 shows the relevant part of the slice for the test-
case ArrayAccess2 of the benchmark suite DroidBench (see
Section 7). This testcase evaluates if an analysis approx-
imates array operations. An array is filled with sensitive
(device Id, line 3-4) and non-sensitive data ("no taint", line
2), of which the latter is finally leaked via SMS. Conservative
algorithms will spuriously report a sensitive data leak. In
contrast, R-Droid can statically resolve the array access.
Given the array register v8 and the array update instructions
(line 2-3), the content is statically reconstructed as follows:

Step Instruction Reconstructed Array
0 ∅ []
1 v8["4"] = "no taint" [x,x,x,x,"no taint"]
2 v8["5"] = v16 [x,x,x,x,"no taint",v16]

The index v25 in line 1 is computed by a series of operations
in the calculateIndex method (line 6-10). The expression
evaluator starts with the return statement and iteratively
assembles and solves the expression (((1+1)∗5)%10)+4 = 4.
Thus, the non-sensitive value "no taint" is assigned to v8["4"]
in the reconstructed array. With this semantic-preserving
assessment we correctly classify this test as non-leaking.

Domain knowledge. Retargeting values and strings in
presence of API methods requires an understanding of the
API semantics. For example, the concrete string value of the
SMS receiver number ("1066953930" in Listing 1) is inter-
nally constructed via calls to the StringBuilder constructor
and the append method. To enable automatic reasoning for
such API methods we manually model their semantics as
domain knowledge, e.g. in this case the final string is the
concatenation of the provided arguments. This knowledge
is represented as rules specifying method signatures and se-
mantic descriptions how method arguments are transformed.
These rules are then applied to (control-flow ordered) se-
quences of API calls on the same object.
Besides modelling StringBuilder and StringBuffer op-

erations we further add domain knowledge for commonly
used Java collection classes including various kinds of List,
Map, and Set implementations. Internally, they behave like
arrays and provide convenience functions for the developer.
We encode the getter/setter methods of these classes as
domain knowledge and handle them analogously to arrays.
Output 3 shows an excerpt of a slice that creates a list
object, subsequently adds non-sensitive (abc) and sensitive
data (v20) and finally retrieves the first element. Without
domain knowledge, the slice would be incorrectly flagged
as a sensitive data leak. Adding semantic rules for the add,
get and init methods, we can reconstruct the list content
and correctly output the string "abc" from the first position.
This reduces the number of false positives, when sensitive
and non-sensitive data is stored in the same collection. If the
argument of the getter method is statically not computable,

1 v34 = java.util.LinkedList→get{v7}("0")
2 v27 = java.util.LinkedList→add{v7}("def")
3 v23 = java.util.LinkedList→add{v7}(v20)
4 v12 = java.util.LinkedList→add{v7}("abc")
5 java.util.LinkedList→<init>{v7}()
6 v7 = new java.util.LinkedList
7 v20 = ..telephony.TelephonyManager→getDeviceId{v16}()
8 v16 = MyActivity→getSystemService{this}("phone")

Output 3: Slice containing list operations

or if there is no semantic rule for a framework method in the
slice, we conservatively return the original instructions.
In total, we modelled 104 methods in 23 classes as do-

main knowledge. This allows retargeting more complex val-
ues/strings from low-level API calls and hence increases the
number of security checks that can be performed automati-
cally. Moreover, we further simplify the slice and increase
the precision of the result in the aforementioned cases.

5.3 Path Recovery
Being able to discriminate execution paths within the slice

allows a more aggressive optimization since register value am-
biguity (e.g. due to branching) might be resolved. R-Droid
detects three branching indicators within the slice: phi-
instructions, callee-to-caller information and field value re-
trieval/update relationships. WALA’s IR offers flow-sensitivity
for local variables due to the SSA form. Phi statements, an
essential building block of SSA form, are located at intra-
procedural control-flow merge points and represent which
variable modification arises from which path. Field set-
ter/getter operations are not tracked by the intra-procedural
phi instructions and have to be handled separately. For the
latter two branching indicators, multiple execution paths ex-
ist if there is a one-to-many mapping, i.e. if there is one field
retrieval and multiple associated field update instructions or
a non-API function is called from multiple locations.
Depending on the complexity of the slice this step might

introduce a large number of execution paths or might not
be feasible at all. To maintain a good cost-to-benefit ratio,
a threshold for the maximum number of paths and process-
ing time is configurable. If one of these values is exceeded
the optimization is stopped, otherwise the aforementioned
optimization steps are re-applied to each execution path slice.
If R-Droid detects path information, it transforms the

slice into a tree presentation (path tree). If this fails, e.g.
due to recursive code within the slice, we terminate this
optimization step. Tree nodes constitute basic blocks (BB)3

from CFGs of the instructions’ enclosing methods. Slice
statements are subsequently mapped to their BB. Figure 3
shows the path tree generated for the receiver number in
Listing 1 (two execution paths) with four nodes. Our tree
model differs from CFGs in that instructions are connected
rather than blocks, since the smallest unit of resolution are
instruction arguments. If consecutive instructions of the slice
reside in different basic blocks, we generate a waypoint. For
phi-instructions at control-flow merge points, the waypoint
has outgoing edges for each successor, e.g., waypoint1 points
to the assignment instructions of valA and valB.
During tree traversal, the path extraction algorithm tra-

verses the same outgoing edges on waypoints of the same
node (either A or B). This prevents the generation of invalid
paths through impossible combinations, e.g., in our example

3A basic block is a code fragment with only one entry and
one exit.

val1 + val2
phi val1 = (valA, valB)

phi val2 = (valC, valD)
waypoint 2

valA = "10"

valB = "106618"
valD = getValue()

waypoint 1

valC = 66953930

return "5829"

waypoint 3

<onCreate, BB2>

<onCreate, BB0>

<onCreate, BB1>

<getValue, BB0>
1.

2.

3.

4.

5.

1.

2.

1.

2.

1.

3.

A
A

B
B

Figure 3: Path tree for receiver number in Listing 1

only two out of four distinct paths are feasible. Outgoing
edges of waypoints are traversed before its immediate suc-
cessor within the same node (if any). Within a node the
algorithm stops if the end of the instruction list or an in-
struction that is pointed to from a different node is reached.
Applying this algorithm to Listing 1 yields two paths (which
in turn are flow-sensitive slices) that contain the instructions
to reconstruct the correct receiver numbers.

6. SECURITY MODULES
R-Droid is a generic analysis framework tailored to the

specifics of Android that can easily be complemented by
further analysis modules for security and privacy analysis
of applications. We demonstrate its effectiveness and rele-
vance by defining three such security modules—data leakage
detection, user input propagation, and slice rendering.

6.1 Data Leakage Detection
Declared app permissions only indicate what an app could

potentially do, but do not adequately capture the actual
behavior of the app. In particular, correlations between
permissions are hidden, e.g., if address book data leaks to
the Internet. Consequently, users cannot appropriately assess
the risk entailed by installing an app [37, 8, 19]. Our data
leakage detection module reports source-sink pairs identified
between permission-clad APIs.
We leverage the sources and sinks of SuSi [6], and extend

it as follows: Sinks from the Apache classes HTTPClient and
their subclasses are added as they often constitute substan-
tial parts of the app’s network communication. We add
sources that are (a) argument-dependent or (b) constructed
via a series of method calls. A prominent example for (a)
is the API to access the secure system settings, in which
the sensitivity of the returned data depends on the argu-
ment. The device ID is frequently accessed (via argument
"android_id") and serves as unique identifier. Our mod-
ule classifies the sensitivity of the result according to the
parameter resolved during value analysis. The locale de-
vice settings are an example for (b), as getLanguage() and
getCountry() only represent sensitive information if accessed
via java.util.Locale->getDefault(). Finally, we include
framework fields that provide sensitive data into our list
of sensitive sources. android.os.Build and its subclasses
provide numerous data about the installed Android build
and version. To preclude false positives, we disregard sinks
for which the app lacks the required permission (libraries
frequently probe for permissions of the host app) using the
permission map generated by PScout [8].

6.2 User Input Propagation Analysis
User input propagation is a specialization of the previous

module that focuses on leaks of user data provided via UI
widgets. It is configured with the same sinks, however we
identify sources from UI input accessed via findViewById of
android.app.Activity, android.view.View, and their sub-
classes. Input fields marked as passwords are of particular
interest, hence we check for the respective view attributes.
Slices that include user input may be forwarded to the slice-
rendering module to improve readability and to facilitate
manual assessment. Recent work [25, 31] presented an ap-
proach to cover a wider range of sensitive user inputs (like
credit card inputs) by inferring input widget sensitivity via
UI layout descriptions including labels and hints. Integrating
such approaches is an interesting future extension.

6.3 Slice Rendering Module
Related work is usually limited to answering whether data

may flow but has limited support for answering how as it does
not account for individual execution paths between a source
and a sink. Our evaluation shows that this is insufficient as
traditional slices usually contain a significant fraction of the
original program (we found on average 33 statements/slice
and examples with up to 4k statements), which impedes
manual inspection.
Our optimization pipeline efficiently reduces the number of

instructions per slice. Still, reading bytecode or instructions
in some intermediate representation is not as convenient
as reading source code. To close this gap, this module
renders the optimized slices in a human-readable format. To
this end, we transform statements into series of call chains
on the same object. Concretely, the algorithm starts at
the sink and collects all invocations on the target object,
reorders them according to runtime execution order and
iteratively merges them. Class names are omitted when the
class is constant for consecutive invocations. Non-constant
arguments, i.e., return values from framework APIs, are
iteratively replaced by variables. The result omits redundant
information and improves readability (see Section 7.4).

7. EVALUATION
We evaluated R-Droid on the original DroidBench test-

suite and received nearly optimal results. To demonstrate
the scalability and utility of our approach we conducted a
large-scale data/input leakage analysis on 22,700 apps from
Google Play in which R-Droid identified a large number of
privacy-critical data flows originating from sensitive APIs or
from UI widgets. Finally, we elaborate on our slice optimiza-
tion and the effects of our slice rendering module on manual
reviewing efforts.

7.1 DroidBench Test Suite
DroidBench is an evolving open-source test suite [13] con-

taining Android apps crafted to evaluate static and dynamic
analysis approaches. Many of these synthetic test cases eval-
uate the recall of the performed analysis, hence there is a
bias towards over-approximating approaches. There is only
a small number of cases that explicitly check the precision,
i.e., whether the analysis reports on the actual flows and
does not generate false positives. We test R-Droid on the
widely used original DroidBench (v1.0) to demonstrate the
effectiveness of our lifecycle modelling and the benefits of our
slice optimization on the few cases that pose such a challenge.
We compare our results with FlowDroid [7], AmanDroid [42],

Sensitive sources by category

A
cc
ou

nt
In
fo

B
ui
ld

In
fo

B
lu
et
oo

th
In
fo

C
al
en

da
r

C
on

ta
ct
s

D
at
ab

as
e

F
ile

In
fo

L
oc
al
e
In
fo

L
oc
at
io
n

N
et
w
or
k
In
fo

N
F
C

in
fo

SM
S-
M
M
S

U
nc

la
ss
ifi
ed

U
ni
qu

e
Id
en
ti
fie

r

V
er
si
on

In
fo

Code Loading 12 477 27 153 – 388 17 328 184 471 1 1 91 376 205
File 2 16 2 23 – 36 – 7 9 37 2 2 10 19 3
Log 146 3563 285 1516 2 3648 83 2501 1676 (16.1%) 4401 (26.5%) 31 29 1031 3148 (42.1%) 1570
ICC 1 10 2 34 – 42 – 11 5 110 – 1 7 12 7

Network 49 1017 121 505 – 1099 22 803 493 (4.8%) 1255 (7.6%) 6 12 302 897 (12.2%) 478
SMS-MMS – – – – – – – – – – – – – – –

Si
nk

s
by

ca
te
go
ry

Unclassified 202 6335 389 2305 13 5034 127 4797 2715 (26.1%) 6137 49 38 1388 4618 (61.7%) 2921

Table 2: Information flows from sensitive sources to sinks grouped by category.

and DroidSafe [18] and exclude the four implicit test cases
that none of the tools support (as did the original authors).
FlowDroid achieves a high precision (86%, 4FPs) and re-

call (93%, 2 missed flaws). Amandroid, that adapts their
accurate lifecycle modelling, offers similar precision and re-
call as FlowDroid without being explicit about the failing
testcases. DroidSafe used a novel framework abstraction to
capture data-dependences within the API. As a result, they
achieve an optimal accuracy (they detect all explicit flows).
However, their approach also erroneously reports sensitive
flows due to their flow-insensitivity and missing lifecycle
modelling. Instead, our approach yields a precision of 97%
(1FP due to a missing inter-procedural must-alias analysis)
and 100% recall. R-Droid particularly excels in the category
ArraysAndLists that tests over-approximation for container
classes, where all other tools fail.

7.2 Data Leakage Analysis
Even though benchmarks like DroidBench are a valuable

tool to compare different approaches, they are hand-crafted
and their coverage of functionality is rather limited, given
the modest number of tests. Therefore, we conducted a
large scale data leakage analysis on 22,700 apps from the
Google Play Store. The apps were crawled between August
20-23, 2014, starting from the top 100 of each category and
iteratively crawling recommended and similar apps. For this
evaluation we configured R-Droid’s path recovery with a 3
min timeout and a maximum number of 32 paths. During
analysis, this affected 19% of all sinks. In these cases, the
slices were assessed after the first value analysis run, which
might cause imprecision. The experiments were conducted
on a server with four Intel Xeon CPU E5-4650L @ 2.60GHz
processors with 8 cores each and 768GB RAM on which
we ran 64 single-threaded analyses in parallel. Despite its
precision, R-Droid had a reasonable average processing time
of 26min of which the graph builders consumed about 90%.
Our experiments emphasize the relevance of fragments in

current apps (33% contain at least one). As an increasing
fraction of code has been moved from activities to fragments,
modelling their lifecycles accurately becomes imperative for
precise static analyses. Our evaluation shows that apps, that
were originally published prior to Android 3.0, often still
do not adhere to the recommended fragment-based layout
design. For all other apps, however, we detected 11 frag-
ments on average, which corresponds to the average number
of activities per app. Similarly, AsyncTasks are becoming

standard for network communication. 14,244 apps (62.7%)
include at least one AsyncTask.
Table 2 summarizes our findings as flows from sensitives

sources to sinks (grouped by categories as provided by the
SuSi project). We report the absolute number of flows be-
tween source and sink category for all analyzed apps. These
numbers constitute an over-approximation since apps do
not always have the respective permission(s) for a detected
flow (e.g. if the flow is located in a third-party library). To
eliminate such inaccuracy, we use publicly available API-to-
permission information [8, 6] to compute the ratio of detected
flows to the number of apps in the data set that hold all
required permissions.
Our findings confirm the common belief that highly sen-

sitive data like user location or unique IDs are frequently
accessed and leaked via various channels. As an example,
unique IDs are frequently written to logs (42.1%) and to the
network (12.2%). There is a significant number of flows to
unclassified sinks. The classification depends on the runtime
type of the receiver and requires a dedicated analysis. For
example, the write methods of an OutputStream may write
data to memory, to a file or to the network depending on the
concrete stream instance. Similarly, ContentResolvers are
usually queried with a data URI. The concrete parameter
value describes the data type to be accessed, e.g. contacts.
Locale, version, and build information is widely ignored as
sensitive source. Besides common cases in which such infor-
mation is written to the system logs for debugging purposes,
manual investigation revealed that a combination of this in-
formation is commonly used to generate a unique user-agent
ID to identify and track the user. This clearly indicates
that access to such low-sensitive data (that is not protected
by permissions) may threaten the user’s privacy and allows
such apps to evade API-based privacy leak detection analy-
ses. R-Droid did not find sensitive data flows to SMS-MMS
sinks. One reason could be the rather small set of apps
that declare the required permissions (2.6% in our test set).
Another one, that SMS are not suitable to transmit large
amounts of data and in fact most of these apps can be man-
ually classified as phone finder/tracker that notify the owner
via SMS about odd incidents. Although ICC modeling is
out of scope for this work, we quantified how often sensi-
tive data reaches API methods that initiate ICC, such as
startActivity. The absolute numbers are relatively small.
The fraction of cases that actually leak the received data is
presumably even smaller, implying that complex ICC-related
privacy leaks rarely appear in real-world apps.

7.3 Leakage of Sensitive User Input
Private data may not necessarily originate from API calls,

but may also be inserted by the user via user interface wid-
gets. Detecting such data flows requires a dedicated analysis
as described in Section 6.2. Applied to the Google Play
test set R-Droid reported a total number of 2,157 flows
of password-flagged UI widgets in 256 distinct apps. We
manually validated the flows in 150 apps. 9% of all flows
were erroneously flagged as leaking. Some of these false posi-
tives could be eliminated by deriving more export knowledge.
Although not confirmed by a user study, the effort necessary
to manually investigate these cases was notably lower due
to the smaller and more concise output. Similarly, sorting
instructions by control-flow helped in reading and under-
standing the output (see also Section 7.4). We exemplify our
findings in the following:

Case study: Logging of private user data. We iden-
tified that developers frequently log data that is supposed
to be written to files or the network. Although this facili-
tates debugging during development, it may be considered
a privacy breach by users if sensitive input is included in
the log. The app com.bitsontherun.android.dashboard
allows uploading videos to the Bits on the Run online video
platform. Among others, the server response of a sign-up
attempt, including password and email address from an UI
widget in plain, is written to the system logs.

Case study: Plain user input transmission via inse-
cure channels. User-supplied input is frequently sent to
remote servers via HTTP. As part of its service registration
com.CG.checkgmov2 sends a POST message including the
first and last name, email address, and password in plaintext.
This data originates from UI widgets, where one is marked
as password. com.camilo.hkingorders manages/tracks pur-
chases made on hobbyking.com. Within the login routine, R-
Droid reconstructed the authentication request during value
analysis as follows: http://www.hobbyking.com/hobbyking/store/
uh_customerAuthenticateExec.asp?email=$EMAIL &pass-
word=$PW (placeholders were inserted for the sake of brevity).
This clearly violates the user’s privacy, as we manually ver-
ified that the webshop supports HTTPS. We also found
several cases in which user data is transmitted via the face-
book graph library. com.bokskya.books integrates this API
to publish user feeds. The widget used to enter status mes-
sages is marked with the password flag by the developer since
such messages could include private information. However,
R-Droid reported that these messages are sent to Facebook
via HTTP. Manual investigation of the API documentation
revealed that the library indeed does not support secure
transmission via HTTPS (at that time).

7.4 Assessing Manual Reviewing Support
As shown in this section, additional manual investigation

is often required to either validate findings or to understand
app behavior in detail. R-Droid’s optimization pipeline
supports such efforts in multiple ways. During our Google
Play evaluation the slice optimization generated semantically-
equivalent slices that are 49% smaller than standard slices
on average. The use-def tracking outputs slices that contain
34% less instructions on average. The output size is further
reduced by 25% after the application of the value analysis.
This is due to the fact that most optimizations like string
assembly, binary operation calculation, or array access reso-

1 v10 = java.lang.Runtime→exec{v7}(p2)
2 v7 = java.lang.Runtime→getRuntime()
3 Entry hider.InstallService.execCommand1

(android.content.Context,java.lang.String)Z
4 v27 = hider.InstallService→execCommand1(p1, v24)
5 v24 = java.lang.StringBuilder→toString{v21}()
6 v21 = java.lang.StringBuilder→append{v17}(p2)
7 java.lang.StringBuilder→<init>{v17}("pm uninstall ")
8 v17 = new java.lang.StringBuilder
9 Entry hider.InstallService.uninstallapp

(android.content.Context,java.lang.String)Z
10 v24 = hider.InstallService→uninstallapp(this, "hider")
11 v36 = hider.InstallService→execCommand1(p1, v33)
12 v33 = java.lang.StringBuilder→toString{v30}()
13 v30 = java.lang.StringBuilder→append{v26}(v21)
14 java.lang.StringBuilder→<init>{v26}("pm install −r ")
15 v26 = new java.lang.StringBuilder
16 java.io.File→<init>{v21}(v23, p2)
17 v21 = new java.io.File
18 v23 = hider.InstallService→getFilesDir{this}()
19 Entry hider.InstallService.runRootCommand1

(android.content.Context,java.lang.String)Z
20 v44 = hider.InstallService→runRootCommand1{this}(this, "newapp.apk")
21 v33 = hider.InstallService→runRootCommand1{this}(this, "testnew.apk")

Output 4: CF-ordered slice of package installation after
use-def tracking

lution involve multiple instructions that are, in the best case,
optimized to a single value. In many cases the final slice
contains less than 15 instructions. In addition, the control-
flow ordering of instructions and the generic string/value
assembly facilitate code understanding.
In the following we elaborate on our slice rendering module,

which transforms the optimized slices into readable and struc-
tured output to further ease manual investigation. To deduce
malware functionality it is commonly necessary to manually
analyze and understand its code. Our example (from the
Malware Genome Project [48]) belongs to the jSMSHider
family. This SMS malware targets Android users with a
custom ROM. As these devices are already rooted the mal-
ware can install packages without the user’s explicit consent.
Output 4 shows the slice for a “command execution” sink
after use-def tracking. (for the sake of brevity we replaced
the original package name by hider). Although the partially-
optimized slice is moderate in size, it shows that with an
increasing number of instructions manual analysis becomes
tedious. The slice contains a total of three execution paths.
The argument p2 (line 1) of the sink statement depends on
the method argument of the execCommand1 (line 3) which
has two caller sites (line 4+11). The invocation on line 11
depends on the method argument of runRootCommand1 in
line 19 which again has two caller sites (line 20+21).
The rendering module receives slices for each execution

path from the optimization pipeline and transforms them into
structured code (see Output 5). The result precisely shows
that the malware uses this code segment to both uninstall
itself from the system (line 1) and to install its supplemental
apk file, either named newapp.apk or testnew.apk. Manual
analysis of samples of this family revealed that each sample
only contains one of these supplemental apks (presumably
to evade signature-based malware detection mechanisms).

8. CONCLUSION AND FUTURE WORK
We presented a novel slice optimization approach as post-

processing to standard slicing techniques. As part of this ap-
proach we devised a comprehensive value analysis to retarget
strings and values beyond constants. It is generally applicable
and allows a larger number of security- and privacy-related

1 P1: java.lang.Runtime→getRuntime()→exec("pm uninstall hider")
2
3 P2: x1 = java.io.File→<init>(hider.InstallService→getFilesDir(),

"newapp.apk")
4 java.lang.Runtime→getRuntime()→exec("pm install −r "+ x1)
5
6 P3: x1 = java.io.File→<init>(hider.InstallService→getFilesDir(),

"testnew.apk")
7 java.lang.Runtime→getRuntime()→exec("pm install −r "+ x1)

Output 5: Rendered optimized code for Output 4

use-cases, such as various API (mis-) use analyses, to be
assessed in an automatic way. Moreover, the concise output
of R-Droid supports experts in understanding app function-
ality and in manually reviewing the results, a mandatory
task for any static analysis. In ongoing work, we like to
implement more API usage modules to further evaluate and
extend the effectiveness of our approach. Automatically de-
riving expert knowledge from the Android API to improve
the optimization rate would be an exciting future work.

Acknowledgments
This work was supported by the German Federal Ministry
for Education and Research (BMBF) under project VFIT
(16KIS0345) through funding for the Center for IT-Security,
Privacy and Accountability (CISPA) and the initiative for
excellence of the German federal government.

9. REFERENCES
[1] WhatsApp took all my contacts and sent to their

servers without asking me - BlackBerry Forums at
CrackBerry.com. http://forums.crackberry.com/
blackberry-apps-f35/whatsapp-took-all-my-contacts-
sent-their-servers-without-asking-me-649363/.

[2] T.J. Watson Libraries for Analysis (WALA).
http://wala.sf.net, 2006.

[3] Dexlib Android bytecode library.
https://code.google.com/p/smali/, 2009.

[4] B. Alpern, M. N. Wegman, and F. K. Zadeck.
Detecting equality of variables in programs. In Proc.
15th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL ’88).
ACM, 1988.

[5] Android Documentation: Fragment. http://developer.
android.com/guide/components/fragments.html.

[6] S. Arzt, E. Bodden, and S. Rasthofer. A
machine-learning approach for classifying and
categorizing Android sources and sinks. In Proc. 21th
Annual Network and Distributed System Security
Symposium (NDSS ’14). The Internet Society, 2014.

[7] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. le Traon, D. Octeau, and P. McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps. In
Proc. ACM SIGPLAN 2014 Conference on
Programming Language Design and Implementation
(PLDI 2014), 2014.

[8] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie.
Pscout: Analyzing the android permission specification.
In Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS ’12,
pages 217–228, New York, NY, USA, 2012. ACM.

[9] A. Chaudhuri, A. Fuchs, and J. Foster. SCanDroid:
Automated security certification of Android

applications. Technical Report CS-TR-4991, University
of Maryland, 2009.

[10] E. Chin, A. Porter Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in Android.
In Proc. 9th International Conference on Mobile
Systems, Applications, and Services (MobiSys ’11).
ACM, 2011.

[11] A. S. Christensen, A. Møller, and M. I. Schwartzbach.
Precise analysis of string expressions. In Proceedings of
the 10th International Conference on Static Analysis,
SAS’03, pages 1–18, Berlin, Heidelberg, 2003.
Springer-Verlag.

[12] ContentProvider API documentation.
http://developer.android.com/reference/android/
content/ContentProvider.html.

[13] EC SPRIDE Secure Software Engineering Group.
DroidBench. https://github.com/secure-software-
engineering/DroidBench.

[14] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel.
An empirical study of cryptographic misuse in android
applications. In Proceedings of 20th ACM Conference
on Computer and Communications Security, CCS ’13,
pages 73–84, New York, NY, USA, 2013. ACM.

[15] F-Secure Labs. Mobile Threat Report Q1 2014.
https://www.f-secure.com/documents/996508/
1030743/Mobile_Threat_Report_Q1_2014.pdf, 2014.

[16] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner,
B. Freisleben, and M. Smith. Why eve and mallory love
android: an analysis of android ssl (in)security. In Proc.
19th ACM Conference on Computer and
Communication Security (CCS ’12). ACM, 2012.

[17] C. Gibler, J. Crussell, J. Erickson, and H. Chen.
Androidleaks: automatically detecting potential privacy
leaks in android applications on a large scale. In Proc.
5th international conference on Trust and Trustworthy
Computing (TRUST ’12). Springer-Verlag, 2012.

[18] M. I. Gordon, D. Kim, J. Perkins, L. Gilham,
N. Nguyen, and M. Rinard. Information-flow analysis
of Android applications in DroidSafe. In Proceedings of
the 22nd Annual Network and Distributed System
Security Symposium (NDSS’15), 2015.

[19] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller.
Checking app behavior against app descriptions. In
Proc. 36th International Conference on Software
Engineering (ICSE ’14), pages 1025–1035, 2014.

[20] M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi.
Unsafe exposure analysis of mobile in-app
advertisements. In Proc. 5th ACM conference on
Security and Privacy in Wireless and Mobile Networks
(WISEC ’12). ACM, 2012.

[21] J. Graf. Speeding up context-, object- and
field-sensitive SDG generation. In Proc. 9th IEEE
International Working Conference on Source Code
Analysis and Manipulation. IEEE Computer Society,
Sept. 2010.

[22] C. Hammer and G. Snelting. Flow-sensitive,
context-sensitive, and object-sensitive information flow
control based on program dependence graphs.
International Journal of Information Security,
8(6):399–422, Dec. 2009.

[23] J. Hoffmann, M. Ussath, T. Holz, and
M. Spreitzenbarth. Slicing droids: Program slicing for

http://forums.crackberry.com/blackberry-apps-f35/whatsapp-took-all-my-contacts-sent-their-servers-without-asking-me-649363/
http://forums.crackberry.com/blackberry-apps-f35/whatsapp-took-all-my-contacts-sent-their-servers-without-asking-me-649363/
http://forums.crackberry.com/blackberry-apps-f35/whatsapp-took-all-my-contacts-sent-their-servers-without-asking-me-649363/
http://wala.sf.net
https://code.google.com/p/smali/
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/reference/android/content/ContentProvider.html
http://developer.android.com/reference/android/content/ContentProvider.html
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://www.f-secure.com/documents/996508/1030743/Mobile_Threat_Report_Q1_2014.pdf
https://www.f-secure.com/documents/996508/1030743/Mobile_Threat_Report_Q1_2014.pdf

smali code. In Proc. of the 28th Annual ACM
Symposium on Applied Computing (SAC ’13). ACM,
2013.

[24] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. In Proc. ACM
SIGPLAN 1988 Conference on Programming Language
Design and Implementation (PLDI ’88). ACM, 1988.

[25] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and
G. Jiang. Supor: Precise and scalable sensitive user
input detection for android apps. In 24th USENIX
Security Symposium (SEC’15), pages 977–992,
Washington, D.C., Aug. 2015. USENIX Association.

[26] J. Kim, Y. Yoon, K. Yi, and J. Shin. ScanDal: Static
analyzer for detecting privacy leaks in android
applications. In Mobile Security Technologies 2012
(MoST’12). IEEE, 2012.

[27] L. Li, A. Bartel, T. F. Bissyandé, J. Klein,
Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden,
D. Octeau, and P. Mcdaniel. IccTA: Detecting
Inter-Component Privacy Leaks in Android Apps. In
Proceedings of the 37th International Conference on
Software Engineering (ICSE 2015), 2015.

[28] T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and
M. Deters. A DPLL(T) theory solver for a theory of
strings and regular expressions. In Proc. 26th
International Conference on Computer Aided
Verification (CAV ’14), volume 8559 of Lecture Notes
in Computer Science, pages 646–662. Springer, 2014.

[29] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex:
Statically vetting android apps for component hijacking
vulnerabilities. In Proceedings of 19th ACM Conference
on Computer and Communications Security (CCS ’12),
pages 229–240, New York, NY, USA, 2012. ACM.

[30] McAfee Labs. McAfee mobile security report: Who’s is
watching you? http://www.mcafee.com/us/resources/
reports/rp-mobile-security-consumer-trends.pdf,
Februray 2014.

[31] Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, and
X. Wang. Uipicker: User-input privacy identification in
mobile applications. In 24th USENIX Security
Symposium (SEC’15), pages 993–1008, Washington,
D.C., Aug. 2015. USENIX Association.

[32] D. Octeau, W. Enck, and P. McDaniel. The ded
Decompiler. Technical report nas-tr-0140-2010,
Network and Security Research Center, Department of
Computer Science and Engineering, Pennsylvania State
University, University Park, PA, USA, September 2010.

[33] D. Octeau, D. Luchaup, M. Dering, S. Jha, and
P. McDaniel. Composite Constant Propagation:
Application to Android Inter-Component
Communication Analysis. In Proc. 37th International
Conference on Software Engineering (ICSE ’15), 2015.

[34] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden,
J. Klein, and Y. Le Traon. Effective inter-component
communication mapping in Android with Epicc: An
essential step towards holistic security analysis. In Proc.
22nd USENIX Conference on Security (SEC ’13).
USENIX Association, 2013.

[35] M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and
S. Fahl. To pin or not to pin—helping app developers
bullet proof their tls connections. In 24th USENIX

Security Symposium (SEC’15), pages 239–254,
Washington, D.C., Aug. 2015. USENIX Association.

[36] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel,
and G. Vigna. Execute This! Analyzing Unsafe and
Malicious Dynamic Code Loading in Android
Applications. In Proceedings of the ISOC Network and
Distributed System Security Symposium (NDSS), San
Diego, CA, 2014.

[37] A. Porter Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android permissions demystified. In Proc.
18th ACM Conference on Computer and
Communication Security (CCS ’11). ACM, 2011.

[38] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global
value numbers and redundant computations. In Proc.
15th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL ’88).
ACM, 1988.

[39] D. Shannon, S. Hajra, A. Lee, D. Zhan, and
S. Khurshid. Abstracting symbolic execution with
string analysis. Testing: Academic and Industrial
Conference Practice and Research Techniques -
MUTATION, 0:13–22, 2007.

[40] T. Tateishi, M. Pistoia, and O. Tripp. Path- and
index-sensitive string analysis based on monadic
second-order logic. ACM Trans. Softw. Eng. Methodol.,
22(4):33:1–33:33, Oct. 2013.

[41] M.-T. Trinh, D.-H. Chu, and J. Jaffar. S3: A symbolic
string solver for vulnerability detection in web
applications. In Proc. 21th ACM Conference on
Computer and Communication Security (CCS ’14),
pages 1232–1243. ACM, 2014.

[42] F. Wei, S. Roy, X. Ou, and Robby. Amandroid: A
Precise and General Inter-component Data Flow
Analysis Framework for Security Vetting of Android
Apps. In Proc. 21th ACM Conference on Computer and
Communication Security (CCS ’14), 2014.

[43] Z. Yang and M. Yang. Leakminer: Detect information
leakage on Android with static taint analysis. In Proc.
2012 Third World Congress on Software Engineering
(WCSE ’12). IEEE Computer Society, 2012.

[44] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S.
Wang. Appintent: analyzing sensitive data transmission
in Android for privacy leakage detection. In Proc. 20th
ACM Conference on Computer and Communication
Security (CCS ’13). ACM, 2013.

[45] F. Yu, M. Alkhalaf, and T. Bultan. Stranger: An
automata-based string analysis tool for php. In
J. Esparza and R. Majumdar, editors, TACAS, volume
6015 of Lecture Notes in Computer Science, pages
154–157. Springer, 2010.

[46] F. Yu, T. Bultan, M. Cova, and O. H. Ibarra. Symbolic
string verification: An automata-based approach. In
SPIN, volume 5156 of Lecture Notes in Computer
Science, pages 306–324. Springer, 2008.

[47] Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: A z3-based
string solver for web application analysis. In Proc. 9th
Joint Meeting on Foundations of Software Engineering
(ESEC/FSE ’13), pages 114–124. ACM, 2013.

[48] Y. Zhou and X. Jiang. Dissecting Android malware:
Characterization and evolution. In Proc. 33rd IEEE
Symposium on Security and Privacy (SP ’12). IEEE
Computer Society, 2012.

http://www.mcafee.com/us/resources/reports/rp-mobile-security-consumer-trends.pdf
http://www.mcafee.com/us/resources/reports/rp-mobile-security-consumer-trends.pdf

	Introduction
	Related work
	Motivating example
	Analysis framework
	Pre-processing Phase
	Android Lifecycle Modeling
	Fragment Lifecycle
	Modeling AsyncTask

	Slice optimization
	Use-def Tracking
	Value Analysis
	Path Recovery

	Security modules
	Data Leakage Detection
	User Input Propagation Analysis
	Slice Rendering Module

	Evaluation
	DroidBench Test Suite
	Data Leakage Analysis
	Leakage of Sensitive User Input
	Assessing Manual Reviewing Support

	Conclusion and future work
	References

