
On Demystifying the Android Application Framework:
Re-Visiting Android Permission Specification Analysis

Michael Backes
CISPA, Saarland University & MPI-SWS

Saarland Informatics Campus

Sven Bugiel
CISPA, Saarland University

Saarland Informatics Campus

Erik Derr
CISPA, Saarland University

Saarland Informatics Campus

Patrick McDaniel
Pennsylvania State University

Damien Octeau
Pennsylvania State University &

University of Wisconsin

Sebastian Weisgerber
CISPA, Saarland University

Saarland Informatics Campus

Abstract
In contrast to the Android application layer, An-
droid’s application framework’s internals and their
influence on the platform security and user privacy
are still largely a black box for us. In this paper, we
establish a static runtime model of the application
framework in order to study its internals and provide
the first high-level classification of the framework’s
protected resources. We thereby uncover design pat-
terns that differ highly from the runtime model at
the application layer. We demonstrate the bene-
fits of our insights for security-focused analysis of
the framework by re-visiting the important use-case
of mapping Android permissions to framework/SDK
API methods. We, in particular, present a novel map-
ping based on our findings that significantly improves
on prior results in this area that were established
based on insufficient knowledge about the frame-
work’s internals. Moreover, we introduce the concept
of permission locality to show that although frame-
work services follow the principle of separation of
duty, the accompanying permission checks to guard
sensitive operations violate it.

1 Introduction

Android’s application framework—i.e., the middle-
ware code that implements the bulk of the Android
SDK on top of which Android apps are developed—
is responsible for the enforcement of Android’s
permission-based privilege model and as such is also
a popular subject of recent research on security exten-
sions to the Android OS. These extensions provide
various security enhancements to Android’s security,
ranging from improving protection of the user’s pri-
vacy [26, 46], to establishing domain isolation [29, 12],
to enabling extensible access control [21, 8].

Android’s permission model and its security exten-

sions are currently designed and implemented as best-
effort approaches. As such they have raised questions
about the efficacy, consistency, or completeness [3] of
the policy enforcement. Past research has shown that
even the best-efforts of experienced researchers and
developers working in this environment introduce
potentially exploitable errors [15, 44, 35, 33]. In light
of the framework size (i.e., millions of lines of code)
and based on past experience [15, 44, 16, 33, 36],
static analysis promises to be a suitable and effective
approach to (help to) answer those questions and
hence to demystify the application framework from a
security perspective. Unfortunately, on Android, the
technical peculiarities of the framework impinging
on the analysis of the same have not been inves-
tigated enough. As a consequence, past attempts
on analyzing the framework had to resort to simple
static analysis techniques [7]—which we will show in
this paper as being insufficient for precise results—or
resort to heuristics [33].

In order to improve on this situation and to raise
efficiency of static analysis of the Android application
framework, one is confronted with open questions
on how to enable more precise static analysis of the
framework’s codebase: where to start the analysis
(i.e., what is the publicly exposed functionality)?
Where to end the analysis (i.e., what are the data
and control flow sinks)? Are there particular design
patterns of the framework runtime model that impede
or prevent a static analysis? For the Android applica-
tion layer, those questions have been addressed in a
large body of literature. Thanks to those works, the
community has a solid understanding of the sinks and
sources of security- and privacy-critical flows within
apps (e.g., well-known Android SDK methods) and a
dedicated line of work further addressed various chal-
lenges that the Android application runtime model
poses for precise analysis (e.g., inter-component com-
munication [28, 40, 24, 27] or modelling the Android

app life-cycle[25, 6]). Together those results form a
strong foundation on which effective security- and
privacy-oriented analysis is built upon. In contrast
to the app layer, for the application framework we
have an intuitive understanding of what constitutes
its entry points, but no in-depth technical knowledge
has been established on the runtime model, and al-
most no insights exist on what forms the security
and privacy relevant targets of those flows (i.e., what
technically forms the sinks or “protected resources”).

Our Contributions. This paper contributes to
the demystification of the application framework from
a security perspective by addressing technical ques-
tions of the underlying problem on how to statically
analyze the framework’s code base. Similar to the de-
velopment of application layer analyses, we envision
that our results contribute some of the first results to
a growing knowledge base that helps future analyses
to gain a deeper understanding of the application
framework and its security challenges.

How to statically analyze the application framework.
We present a systematic top-down approach, start-
ing at the framework’s entry points, that establishes
knowledge and solutions about analyzing the control
and data flows within the framework and that makes
a first technical classification of the security and pri-
vacy relevant targets (or resources) of those flows.
The task of establishing a precise static runtime
model of the framework was impeded by the absence
of any prior knowledge about framework internals
beyond black-box observations at the framework’s
documented API and manual analysis of code frag-
ments. Hence we generate this model from scratch
by leveraging existing results on statically analyzing
Android’s application layer at the framework layer.
The major conceptual problem was that the design
patterns of the framework strongly differ from the
patterns that had been previously encountered and
studied at the application layer. Consequently we
devised a static analysis approach that systematically
encompasses all framework peculiarities while main-
taining a reasonable runtime. As result of this overall
process, we have established a dedicated knowledge
base that subsequent analyses involving the applica-
tion framework can be soundly based upon.

Axplorer tool and evaluation. Unifying the lessons
learned above, we have built an Android application
framework analysis tool, called Axplorer. We eval-
uate Axplorer on four different Android versions—
v4.1.1 (API level 16), v4.2.2 (17), v4.4.4 (19), and
v5.1 (22)—validate our new insights and demonstrate
how specialized framework analyses, such as message-

based IPC analysis and framework component inter-
connection analysis, can be used to speed up sub-
sequent analysis runs (e.g. security analyses) by
75% without having to sacrifice precision. As addi-
tional benefit the resulting output can be used by
independent work as is to create a precise static run-
time model of the framework without the need to
re-implement the complex IPC analysis.

Android permission analysis. Finally, to demonstrate
the benefits of our insights for security analysis of
the framework, we conduct an Android permission
analysis. In particular, we re-visit the challenge of
creating a permission map for the framework/SDK
API. In the past, this problem has been tackled [32, 7]
without our new insights in the peculiarities of the
framework runtime model, and our re-evaluation of
the framework permission map reveals discrepancies
that call the validity of prior results into question.
Using Axplorer, we create a new permission map
that improves upon related work in terms of precision.
Moreover, we introduce a new aspect of permission
analysis, permission locality, by investigating which
framework components enforce a particular permis-
sion. We found permissions that are checked in up to
10 distinct and not necessarily closely related com-
ponents. This indicates a violation of the separation
of duty principle and can impede a comprehensive
understanding of the permission enforcement.

2 Background

We first provide necessary technical background in-
formation on the Android software stack and the
abstract control and data flows in the system. An-
droid OS is an open source software stack on top
of the Linux OS. Between the apps at the top of
the stack and the Linux kernel at the bottom is the
Android middleware. This middleware consists of
the application runtime environment, default native
libraries (like SSL), and the Java-based application
framework (see Figure 1).

2.1 Android Application Framework
The application framework consists of the various
services that implement the Android app API (e.g.,
retrieving location data or telephony functionality).
Every framework service is responsible for provid-
ing access to one specific system resource, such as
geolocation, radio interface, etc.

Bound services. These services are implemented
as bound services [4] as part of the SystemServer.

2

WiFi Manager Location Manager

WiFi Service
(Bound Service)

Location Service
(Bound Service)

SDK

App Framework

Linux OS + Hardware

App App
System Apps

(Contacts, SMS, Dialer,...)

Inter-Process Communication

...

Native Lib Native Lib

...

Native Libraries

Figure 1: Android Software Stack with abstract control
and data flows.

Bound service is the fundamental pattern to realize
Android services that are remotely callable via a well-
defined interface. Such interfaces are described in the
Android Interface Definition Language (AIDL) and
an AIDL compiler allows automated generation of
Stub and Proxy classes that implement the interface-
specific Binder-based RPC protocol to call the service.
Here, Stubs are an abstract class that implements
the Binder interface and needs to be extended by
the actual service implementation. Proxies are used
by clients to call the service. On top of Stubs and
Proxies, the Android SDK provides Managers as ab-
straction from the low-level RPC protocol. Manager
classes encapsulate pre-compiled Proxies and allow
developers to work with Manager objects that trans-
late local method calls into remote-procedure calls to
their associated service and hence enable app devel-
opers to easily engage into RPC with the framework’s
services. However, Proxies and Managers are just
abstractions for the sake of app developer’s conve-
nience and nothing prevents an app developer from
bypassing the Managers or re-implementing the de-
fault RPC protocol to directly communicate with the
services.
A small number of framework services does not

use AIDL to auto-generate their Stub/Proxy, but
instead provides a custom class that implements the
Binder interface. The most prominent exception
is the ActivityManagerService (AMS), which pro-
vides essential services such as application life-cycle
management or Intent distribution. Since its in-
terface is also called from native code, for which
the AIDL compiler does not auto-generate native
Proxies/Stubs and hence requires manual imple-
mentation of those, the RPC protocol for the AMS is
hardcoded to avoid misalignment between manually
written and auto-generated code.

The services are an essential part of the middle-
ware front-end to the application layer and calling
their interfaces triggers control and data flows within
the application framework. Naturally, the flows of
some services lead to interaction with the underlying
platform through the native libs. For instance, the
WifiService is interacting with the WiFi daemon.
Other services, such as Clipboard, do not rely on
any hardware features. However, the exact control
and data flows have not yet been studied or charted
(see blank boxes in Figure 1) and facilitating this
mapping by enabling analysis of the framework is
part of the contributions of this work.

System apps. System apps, such as Contacts, Di-
aler, or SMS complement the application framework
with commonly requested functionality. However, in
contrast to the application framework services that
are fixed parts of any Android deployment, system
apps are exchangeable or omittable (as can be ob-
served in the various vendor customized firmwares)
and, more importantly, are simply apps that are pro-
grammed against the same application framework
API as third-party applications.

2.2 Permissions
One cornerstone of the Android security design are
permissions, which an app must hold to successfully
access the security and privacy critical methods of
the application framework. Every application on
Android executes under a distinct Linux UID and
permissions are simply Strings1 that are associated
with the application’s UID. There is no centralized
policy for checking permissions on calls to the
framework API. Instead, framework services that
provide security or privacy critical methods to
applications (must) enforce the corresponding,
hard-coded permission that is associated with the
system resources that the services expose. To
enforce permissions, the services programmatically
query the system whether their currently calling
app—identified by its UID—holds the required
permission, and if not take appropriate actions
(such as throwing an exception). For instance, the
LocationManagerService would query the system
whether a calling UID is associated with the String
android.permission.ACCESS_FINE_LOCATION,
which represents the permission to retrieve the GPS
location data from the LocationManagerService.

In this model, system apps differ from third-party
apps in that they can successfully request security

1Permissions that map to Linux GIDs do not involve the
framework and are not further considered here.

3

and privacy critical system permissions from the
framework, which are not available to non-system
apps. Moreover, like framework services (and any
non-system application), they are responsible for en-
forcing permissions for resources they manage and
expose on their RPC interfaces (e.g., contacts infor-
mation or initiating phone calls). The difference to
non-system applications is, that they usually enforce
well-known permissions defined in the Android SDK,
although the Android design does—in contrast to
the framework services—not hardcode where those
permissions are enforced, thus allowing system apps
to be exchanged.

3 Related work

Static (app) analysis. Different related works
have analyzed Android apps for vulnerabilities and
privacy violations. Enabling precise static app analy-
sis required solving essential questions like what are
the entry points of the app, what are the security
relevant sinks and how can we achieve a static run-
time model that takes the application peculiarities
into account? Among the static analysis approaches,
CHEX [25] was the first tool to accommodate for
Android’s event-driven app lifecycle with an arbi-
trary number of entry points. FlowDroid [6] further
improved the runtime model by automatically gen-
erating per-component lifecycle models that take
into account the partial entry point ordering. While
FlowDroid still analyzed components in isolation, a
number of related works specifically addressed the
problem of inter-component communication (ICC).
The initial work Epicc [28] devised a new analysis
technique to create specifications for each ICC sink
and source. Amandroid [40] combined a lifecycle-
aware program dependence graph with ICC analysis
to generate an inter-component model of the ap-
plication to improve precision for various security
applications. Similarly, IccTA [24] extended Flow-
Droid with a precise inter-component model. Finally,
IC3 [27] uses composite constant propagation to im-
prove retargeting of ICC-related parameters enabling
a more precise ICC resolution. Moving from best
effort approaches, SuSi [5] took a machine-learning
approach for classifying and categorizing sources and
sinks in the framework code that are relevant for ap-
plication analysis. All of those solutions contribute to
analyzing Android apps more efficiently. The focus
of this work is on establishing similar knowledge on
Android’s application framework and on making a
first essential but non-trivial step towards enabling a
holistic analysis of Android that includes the frame-
work code with its security architecture.

Application Framework Abstractions. The
application framework is generally regarded as too
complex to be considered in an app analysis (cf.,
CHEX [25]) and very recent works dealt specifi-
cally with this problem of abstracting the application
framework [13, 18] or making it amenable for app
analysis [11]. EdgeMiner [13] links callback meth-
ods to their registration methods and generates API
summaries that describe implicit control flow transi-
tions through the framework. DroidSafe [18] distills
a compact, data-dependency-aware model of the An-
droid app API and runtime from the original frame-
work code. Droidel [11] differs in its approach by
explicating the reflective bridge between the appli-
cation framework and applications, while trying to
model the framework as less as possible. It generates
app-specific versions of the application framework
and replaces reflective calls with app-specific stubs.
All of these approaches try to pre-compute data-
dependencies through the framework API that can
be used by app analyses in favor of using the com-
plex and huge framework code base. In contrast, our
work makes a first step towards enabling in-depth
analyses of the application framework beyond just
data dependencies in order to enable future reasoning
about framework security architectures or extensions
(such as guiding and verifying hook placement or
separation of duties).

Permission Mapping and Inconsistencies.
Both Stowaway [32] and PScout [7] built permis-
sion maps for the framework API. Stowaway used
unit testing and feedback directed API fuzzing of the
framework API to observe the required permission(s)
for each API call. PScout, in contrast, used static
reachability analysis between permission checks and
API calls to create a permission mapping of different
Android framework versions that improves on the re-
sults of Stowaway. Permission maps have since been a
valuable input to different Android security research,
such as permission analysis [20] and compartmen-
talization [31, 34] of third-party code, studying app
developer behavior [32, 38], detecting component hi-
jacking [25], IRM [23, 10] and app virtualization [9],
or risk assessment [30, 19, 45, 42]. In this work, we
re-visit the challenge of creating a permission map for
Android. In contrast to the prior work, we build on
top of our new insights on how to statically analyze
the application framework (see Sections 4 and 5),
which allow us to achieve a map that is more precise
for the application framework API and that calls the
validity of some prior results [7] into question. We
discuss how recent work [33] that focused on incon-
sistent security enforcement within the framework

4

could benefit from a deeper understanding of the
framework’s peculiarities separately in Section 8.

Android Security Frameworks. Various secu-
rity extensions have been proposed, such as [26, 46,
29, 12, 21, 8] to name a few, which integrate autho-
rization hooks into Android’s application framework
to enforce a broad range of security policies. At the
moment, those extensions are designed and imple-
mented as best-effort approaches that raise questions
about the completeness and consistency of the en-
forcement and indeed past research has shown that
even the best-efforts of highly experienced researchers
and developers working in this environment intro-
duce potentially exploitable errors [15, 44, 35, 33].
This unsatisfying situation has strong parallels to
earlier work on integrating authorization hooks into
the Linux and BSD kernels [41, 39], where a dedi-
cated line of work [15, 44, 16] has established tools
and techniques to reason about the security proper-
ties of proposed extensions or to automate the hook
placement. Prerequisite for those solutions was a
clear understanding of what constitutes a resource
that is (or should be) protected by an authorization
hook. To allow development of similar tools for the
Android application framework, we hence have to
also answer the question about Android’s protected
resources first. In this work we want to make a first
essential step in this direction by enabling a deeper
analysis of the framework and by providing a first
high-level taxonomy of protected resources in the
application framework.

4 Enabling In-Depth Application
Framework Analysis

In contrast to the various related works on static
analysis at the application level, there is no exist-
ing prior work on in-depth analysis of the applica-
tion framework. Moreover, as the architecture of
the framework fundamentally differs from the archi-
tecture of applications, open questions have to be
answered first to be able to conduct in-depth static
analysis of the framework. For instance, “what are
the entry points to the application framework?” or
“how to establish a static runtime model of the frame-
work’s control flows?” In the following we identify
challenges that arise for static analyses at framework
level and present a systematic, top-down approach to
cope with these problems (an implementation of our
approach is presented in Section 5). Solving the dis-
cussed challenges lays the foundation on which a wide
range of security analyses of the application frame-

work can be constructed, from which we (re-)visit
the use-case of permission analysis in Section 7.

4.1 Defining Framework Entry Points
The first question to be answered is how to iden-
tify and select the starting points for the framework
analysis? At application level this has already been
studied in depth [25, 6, 14, 17, 43]. From a high-level
view, most approaches parse the declared compo-
nents from the application manifest and determine
the components as well as dynamically registered
callbacks as entry points; or they build componen-
t/application life-cycle models with a single main
entry method.

Challenge: The framework model is conceptually
different from the application layer and existing
approaches for application layer analysis do not
apply in a framework analysis. Instead one has
to identify the framework API methods that are
exposed to app developers as analysis entry points.

To identify the entry point methods, we have to
locate the relevant framework entry point classes.
Starting with the official API of the Android SDK
(e.g., Managers in Figure 1) is not reliable as there are
no means to prevent an app developer from bypassing
the SDK by immediately communicating with the
framework services or by using reflection to access
hidden API methods of the SDK. Consequently, we
do not consider the API calls within the SDK as
entry points but instead the framework classes that
are entry points for accessing framework functionality
(i.e., framework classes that are being called by the
SDK, see Figure 1). We exclude entry points that
are not accessible by app developers, such as Zygote,
service manager, or the property service, which are
under special protection (e.g., SELinux [37]) and will
not accept commands by third-party apps that have
tangible side-effects on the system or other apps. This
restriction is in accordance with the design of existing
Android security extensions, which exclusively focus
on the exported functionality of the app framework
(e.g., framework’s bound services).

Inter-component communication in Android is by
design based on Binder IPC and, thus, framework
classes have to expose functionality via Binder inter-
faces to the application layer. To this end, interfaces
must be derived from IInterface, the base class
for Binder interfaces. Binder interfaces might be
automatically generated by AIDL, in this case the
entry point classes extend the auto-generated Stub
class, or in case of Binder interfaces that are not gen-
erated by AIDL, a custom Binder implementation

5

like ActivityManagerNative2 has to be provided,
which in turn is extended by the entry point classes.
These class relationships can be resolved via a class
hierarchy analysis (CHA) to determine the set of
all entry classes. Besides bound services this also
includes callback and event listener classes that ex-
pose an implementable interface to app developers.
Hence, we define entry points (EP) as the public
methods of framework classes that are exposed via a
Binder interface. In addition, permission-protected
entry points (PPEP) are defined as entry points from
which a permission check is control-flow reachable.

4.2 Building a Static Runtime Model

Challenge: Generating a static model that ap-
proximates the runtime behaviour of the application
framework again strongly differs from the problems
that arise at application level where the component
life-cycles are mimicked to approximate runtime be-
havior. The bound services—as entry points to the
framework—might be queried simultaneously from
multiple clients (apps) via IPC and hence have to
handle multi-threading to ensure responsiveness of
the framework. In contrast to the application space
at which utility classes like AsyncTask are used for
threading, we discovered that the framework ser-
vices make intensive use of more generic but also
more complex threading mechanisms like Handler,
AsyncChannel, and StateMachines. Disregarding
these concurrency patterns results in imprecise data
models that cause a high number of false positives
during framework analysis.

In the following, we provide technical background for
those asynchronicity patterns and explain how they
can modeled correctly for static analyses.

Handler. The class android.os.Handler pro-
vides a mechanism for reacting to messages or sub-
mitting Java Runnable objects for execution on a
(potentially remote) thread. Handlers either sched-
ule the processing of a message or the execution of
a Runnable at some point in the future or process a
message/Runnable on a separate thread.
To illustrate the Handler mechanism, consider

the example shown in Listing 1. It includes
the relevant sections of the framework class
com.android.server.BluetoothManagerService.
When the service is constructed, it instantiates
a HandlerThread object (line 6), a traditional
Thread object associated with a Looper. The

2By convention non-generated class names end with Native.

1 class BluetoothManagerService {
2 private HandlerThread mThread ;
3 private BluetoothHandler mHandler ;
4
5 public BluetoothManagerService () {
6 mThread = new

HandlerThread (" BluetoothManager ");
7 mThread . start ();
8 mHandler = new

BluetoothHandler (mThread . getLooper ());
9 }

10 public void enable () {
11 Message msg =

mHandler . obtainMessage (MESSAGE_ENABLE);
12 mHandler . sendMessage (msg);
13 }
14 public void disable () {
15 Message msg =

mHandler . obtainMessage (MESSAGE_DISABLE);
16 mHandler . sendMessage (msg);
17 }
18
19 class BluetoothHandler extends Handler {
20 public void handleMessage (Message msg) {
21 switch (msg.what) {
22 case MESSAGE_ENABLE :
23 // process enable message
24 break ;
25 case MESSAGE_DISABLE :
26 // process disable message
27 break ;
28 // Other cases .
29 }}}
30 }

Listing 1: Bluetooth Handler in the Bluetooth
manager service. Code was simplified for readabililty.

purpose of the Looper class is to sequentially process
the messages in a message queue. At line 8, the
class-specific BluetoothHandler object is created
and associated with the newly created Looper
from the HandlerThread. This allows messages
sent to the BluetoothHandler to be pushed to the
message queue for this Looper. Methods enable
and disable can be called by applications via
RPC on IBluetoothManager to turn the bluetooth
functionality on or off. Method enable sends
a message with code MESSAGE_ENABLE to the
BluetoothHandler (line 12). When the associated
Looper instance processes the message, it calls
method handleMessage in the BluetoothHandler
(line 20), which then processes the request.

Statically resolving message-based IPC, requires
to overcome several challenges. First, the target
Handler type has to be inferred, to determine the con-
crete handleMessage method of the receiving class
that processes the message. Second, to add precision
to the analysis, it is best to make it locally path-
sensitive by inferring the possible message codes of
the arguments to sendMessage methods. For the ex-
ample presented in Listing 1, this enables the analysis
to be limited to the feasible paths for a given message
in the switch at line 21. While it is possible to per-

6

form the analysis without this information, doing so
results in a significant loss of precision and, thus, an
increase in the number of false positives, which may
distort the results of security analyses built on top.
In light of the prevalence of the Handler pattern,
this loss of precision is not an acceptable solution.
Finally, since messages can also be associated with
runnable tasks instead of message codes, the con-
crete Runnable types associated with each message
have to be inferred to determine the runnable code
executed when such a message is processed.

AsyncChannel. Closely related to Handlers,
com.android.internal.util.AsyncChannel im-
plements a bi-directional channel between two
Handler objects. It provides its own sendMessage
and replyToMessage methods, both of which dele-
gate to the sendMessage methods in its associated
Handler. In order to precisely model AsyncChannel
objects, it is necessary to infer the types of the
sender/receiver Handler objects. Similarly to
Handlers, path-sensitivity should be added to the
analysis by inferring the message codes that are sent
through the channel.

StateMachine. Building on the Handler concept,
the com.android.internal.util.StateMachine
class models complex subsystems such as the DHCP
client or the WiFi connectivity manager. This
class allows processing of messages depending
on the current state of the modeled system. It
effectively constitutes a hierarchical state machine
in which messages cause state transitions. States
are organized in a hierarchical manner, such that
parent states may process messages that are not
handled by child states. In order to precisely model
state machines, several challenges must be addressed.
First, the subtype of the state machine itself must be
inferred, with all the states and possible transitions.
Second, the hierarchy of the states must be inferred,
in order to know which enter and exit state
methods are called upon state transitions. Moreover,
this is necessary to know which state may handle a
given message. Third, for eliminating further false
positives one needs to infer the possible states for
any given program location at which interaction
with the state machine occurs.

4.3 Identifying Protected Resources
While the previous sections show how static analy-
sis of the android application framework code base
can be enabled, we now classify the resources in-
side the application framework that actually have

to be protected. Unfortunately, there is a lack of
consensus in the community on what constitutes
a security-sensitive resource/operation [5, 16] and
no one-size-fits-all definition exists as the concrete
definition depends on various aspects like operating
system, programming language, or even the domain.
To avoid ambiguities on what we denote as protected
resource in the remainder of this paper, we note that
protected resources for us are security sensitive oper-
ations that have a tangible side effect on the system
state or use of privacy.

Challenge: Defining the security-relevant re-
sources is, in contrast to entry points, more chal-
lenging. For privacy leak analysis at application-
level, there is a well-defined list of API methods
that can be classified as sinks. Since the analysis
now shifts into the API methods of the framework,
it is unclear what kind of resources are protected
by Android’s permissions and can, thus, be used as
sinks for security analysis within the framework.

To create a first high-level taxonomy of protected
resources that can help to automatically discover
such resources, we first have to create a ground truth
about what technically forms a protected resource.
To this end, we manually investigated control flows
of a number of identified PPEP in the framework’s
source code. Here, we make the assumption that
every existing permission check within the applica-
tion framework indeed controls access to at least one
security- or privacy-critical system resource. Checks
are usually located at the very beginning of PPEP, so
that any subsequent operation is indeed authorized.
Using expert knowledge in combination with descrip-
tions of expected side effects from the Android docu-
mentation we identify and annotate relevant state-
ments that modify the service and/or system state.
To avoid a potential bias in the types of protected
resources, we chose entry points from eight different
entry classes. To cover a variety of disjunct cases, we
based our selection on the available information such
as return value, number/type of EP input arguments,
or number/type of permission checks collected during
the entry point discovery. After manually investigat-
ing flows from 35 entry points, distinct repetitive
patterns for protected resources appeared across the
different control flows, which we summarized in a
taxonomy of the high-level protected resource types.

Taxonomy of protected resources. Figure 2
presents our high-level taxonomy of the protected re-
source types. In contrast to work at application-level
that disregards field instructions [5], we found that
field update instructions are highly relevant in the

7

context of the framework and in fact are the most
prevalent type of protected resources that we discov-
ered. Relevant method invocations can be further sub-
classified into native method calls (e.g. for file system
access or modification of device audio settings) and
broadcast sender. We consider native method calls
generally as protected resources, since distinguishing
non-/security-relevant native calls would require a
dedicated analysis for the native code, which is cur-
rently a general, open problem for the community
and out of scope for this work. Broadcast senders are
protected resources as they can potentially cause in
the receivers side-effects on the system or apps. How-
ever, this is statically unresolvable, as the concrete
side-effects strongly depend on the current system
configuration, e.g. on the installed apps and the set
of active broadcast listener. We consider non-void
return values of security-sensitive entry methods as
protected resource. Returned objects of such meth-
ods constitute sensitive data, e.g., a list of WiFi
connections. Return values of primitive types int or
boolean may constitute sensitive values like for the
method isMultiCastEnabled of the WifiService
or some status/error code in method enableNetwork
of the same service. We also found cases in which
a throw RuntimeException (RTE) has to be consid-
ered as a protected resource. For instance, in the
crash method of the PowerManagerService, which
requires from the caller the permission to reboot the
device, an RTE causes the runtime to crash and the
device to reboot in consequence.

Coverage of the taxonomy. An inherent limita-
tion of our taxonomy based on small-scaling manual
analysis is, that there are no guarantees that corner
cases are included in the current classification. To
cover all corner cases in our taxonomy, a compre-
hensive manual analysis of the framework would be
required, which would defeat the purpose of enabling
a static analysis in the first place. This constitutes
a high-level taxonomy of protected resource (types)
in the framework. Distilling a more refined set for
security analyses is discussed separately in Section 8.

5 Implementation

We combined all aforementioned steps from Section 4
for analysis of an arbitrary framework version into
a tool called Axplorer. We leverage the static
analysis frameworkWALA [2], although our approach
is equally applicable to other analysis frameworks
such as Soot [1]. Additional code for realizing our
approach comprises ≈15 kLOC of Java.

Protected Resource

Field updates

Method invocations

Return values

Throw instructions Throw Run-
timeException

Native method
invocations

Broadcast sender

Figure 2: High-level taxonomy of protected resource
operation types.

Call-graph generation. For each identified en-
try class, we generate an inter-procedural call-graph
(CG). As opposed to related approaches [7] that use
class hierarchy analysis to generate low-precision call-
graphs due to the overall framework complexity—
Android version 4.2.2 already includes over 35,000
classes—we generate high-precision call-graphs with
object-sensitive pointer resolution. For each virtual
or interface invocation we infer the runtime type(s)
and hence precisely connect the invocation to its
target(s). Although the costs for the points-to com-
putation are computational very expensive, the in-
creased precision lowers the complexity of the overall
call-graph, since we do not introduce imprecision by
considering all subclasses of a virtual method call as
potential receivers. Avoiding this imprecision in the
call-graph also lowers the number of false positives.
The complexity is further reduced by the design de-
cision to not follow RPC calls to other entry classes.
We complement the call-graph with message-based
IPC edges during the control-flow slicing (see below).

Slicing & on-demand msg-based IPC resolu-
tion. We conduct a forward control-flow slice for
each identified entry point method. The slicer stops
at native methods, RPC invocations to classes other
than the current one, and when the entry point
method returns. During slicing, we perform an on-
demand message/handler resolution to add message-
based IPC edges to the call-graph, thus avoiding a
huge computational overhead of computing all edges
in advance when only a subset of them are required
for analysis (e.g. if PPEP are analyzed only).

When the slicer reaches a sendMessage call, we in-
fer the concrete handler type and add a call edge from
the sendMessage call to the handleMessage method
of the receiving handler. We augment this process
with inter-procedural backwards slicing for two rea-
sons: First, since existing type inference algorithms
(like the ones implemented in WALA) work intra-
procedurally, type inference fails if Handler objects
are stored in fields whose declared field type is the

8

Handler base class and not the concrete subtype. Us-
ing inter-procedural backwards slicing starting at the
message-sending instruction, we obtain a more pre-
cise set of possible handler types in Axplorer. Sec-
ond, Messages are usually not constructed explicitly
but indirectly obtained via calls to Message.obtain
or Handler.obtainMessage and contain a public in-
teger field that carries a sender-defined message code
that allows the recipient to identify the message type.
To statically identify the message code we compute
a backwards slice starting from the message-sending
instruction and check the resulting set of instructions
for calls that construct/obtain a message. We then
repeat this approach starting from the message ob-
tain call to infer the concrete message code used to
initialize the Message.

Handlers use switch statements to match the pro-
vided message code and to transfer control-flow to
a specific basic block of the method’s control-flow
graph (cf. line 25 et seqq. in Listing 1). To avoid
infeasible paths, we have to recreate path-sensitivity
intra-procedurally and map the message code(s) to
the individual execution path(s). The control-flow
slicer then continues at this specific execution path to
avoiding a huge number of false positives. Runnable
types on a post call of the Handler are resolved
in the same way and a call edge to the Runnable’s
run method is added. The approach slightly differs
in case of StateMachines. Here, there is no single
handleMessage function. Instead, each State im-
plements its own processMessage function. In this
case, we recreate path-sensitivity for each of these
functions and delegate the control-flow to any match-
ing switch statement.

6 Framework Complexity Analysis

We apply our gained insights from Section 4 to col-
lect complexity information about the application
framework. By doing this, we demonstrate how the
analysis complexity can be held manageable to allow
such in-depth analysis within a reasonable amount of
time. Finally, we collect the framework’s protected
resources as denoted in our taxonomy and validate
the results (a detailed discussion on how security
analyses can benefit from this is given in Section 8).
Using Axplorer we analyze four different Android
versions: 4.1.1 (API level 16), 4.2.2 (17), 4.4.4 (19),
and the latest Lollipop release 5.1 (22).

6.1 Handling Framework Complexity
Table 1 summarizes different complexity statistics
generated for the four analyzed versions. Unsur-

prisingly, the complexity in terms of code increases
with each version, whereas the gap to the most re-
cent major version is significantly larger as between
the minor version changes due to new features like
Android TV. The entry class discovery algorithm
identified between 242–383 entry classes of which
≈25% include at least one PPEP. The evaluation was
conducted on a server with four Intel Xeon E5-4650L
2.60 GHz processors with 8 cores each and 768 GB
RAM. Initial processing of the frameworks finished
in reasonable time, ranging from 14–126 hours. Note
that this computation has to be done only once per
Android version and that there are no real-time con-
straints as, e.g., in application vetting. The most
time-consuming task (about 85% of the overall time)
was generation of the high-precision call-graphs. In
the following, we describe the use of entry-class inter-
connection and IPC analysis to speed up processing
time without loosing the precision of our data model.

Entry class interconnection. IPC-interfaces of
framework entry classes are not only used by the
application layer, but also by other framework ser-
vices. Analyzing the communication behavior of
entry classes does not only provide a deeper under-
standing of how the framework services are inter-
connected but also facilitates analyses that rely on
permission checks as security indicator (e.g., see Sec-
tion 7). Exploiting the knowledge about which ser-
vice EP triggers which RPCs along its control flow
enables pre-computation of execution path conditions
and restricting the scope of a service analysis to only
subsets of dependent services rather than the entire
framework (i.e, it allows to efficiently divide and con-
quer the framework analysis). In a post-processing
step the analysis results for distinct services can be
stitched together at RPC boundaries. Appendix A
illustrates the RPC interconnections for Android 5.1.

Message-based IPC Analysis. A precise model
of the message sender to handler relations is crucial
for the generation of a static runtime model of the
framework with a low number of false connections.
The last row in Table 1 shows the prevalence of the
message sending pattern. Between 38–52% of PPEP
include at least one message sending call. Across API
levels we found 300 (API 16) to over 500 (API 22)
distinct message sender calls used within PPEP. The
evaluation of our IPC analysis showed that in 7% of
all cases the message was sent to a StateMachine,
and in 27% of all cases to a Handler. In the remain-
ing 66% a Runnable was posted. This ratio remains
approximately the same in all versions. Overall, our
IPC analysis was able to fully resolve about 76%

9

Android version 4.1.1 (16) 4.2.2 (17) 4.4.4 (19) 5.1 (22)

of classes 27,749 29,804 31,023 46,192
- inner classes 14,784 15,936 17,525 28,933

of entry point classes 242 256 284 383
- with at least one PPEP 64 (26.4%) 73 (28.5%) 75 (26.4%) 81 (21.2%)

entry methods (EP) 2,583 2,734 2,861 3,225
- with perm check (PPEP) 863 (33.4%) 1,018 (37.2%) 1,227 (42.9%) 1,250 (38.8%)

- incl. message sending 328 (38.0%) 532 (52.2%) 518 (42.2%) 597 (47.8%)

Table 1: Comparing complexity measures for different Android versions (percentages relate to preceding line).

of all message sending instances, yielding already
a very valuable data set of the message sender to
handler relationships. Reasons for failed resolution
are that either the Handler (81%) or Runnable (5%)
could not correctly be inferred while in the remaining
13% of cases the message code could not be inferred.
The root cause of most of these failures is the miss-
ing/incomplete support of AsyncChannels and the
Message.sendToTarget() API call. At the time of
writing this support is work-in-progress.

During our initial analysis run Axplorer records
both an RPC-map per entry class as well as a list of
resolved sender-to-handler relationships. This data
is then re-applied as expert knowledge in subsequent
analysis re-runs to significantly reduce the analysis
runtime, e.g., for API level 17, the processing time
drops by ~75% to about 7 hours. By publishing
this data we hope that independent analyses can
equally benefit from this by removing the burden to
re-implement a comparable IPC resolution algorithm.

Reflection We analyzed reflection usage within
framework code by counting the number of calls
to methods within the java.lang.reflect package.
The absolute numbers range from 89 (API 16) to
118 (API 22). Across API levels less than 50% tar-
geted the Method class while the remaining calls were
distributed among other reflection classes. In many
cases reflection is used in utility or debug classes
and we found only one entry class that makes use of
reflection (ConnectivityService), but the respec-
tive method was removed in API level 20. In SDK
code the total numbers are slightly higher across
API levels (115–288). However, the additional usage
of reflection is mainly due to View/Widget classes.
Overall, reflection is only rarely used in framework
code and not used at all by main service components.

6.2 Android’s Protected Resources
To validate our established taxonomy, we collect the
protected resources for each Android version and
classify them with respect to the taxonomy. Across

versions the total number ranges from 6,5k (API 16)
to 10k (API 22). Although these numbers seem quite
high at first glance, they are reasonable in relation
to the overall size and complexity of the framework.
Axplorer recorded the context depth (in terms of
method invocations) at which the protected resources
were found. While for simple methods that include
few (or only even one) resource the call depth is
lower than two, the median call depth ranges from
8–11 across Android versions. This emphasizes that
approaches that do not perform in-depth analysis are
not suitable to detect resources located deeper in the
control-flow. The relative distribution of resources
per type is stable across all versions. We validated
our statement of Section 4.3 that field update instruc-
tions are the most prevalent resource type (with a
share of about 75%). They are followed by native
method calls (about 21–23%), which are most fre-
quently used as a gateway to the device hardware (e.g.
file system, audio, nfc). There is a surprisingly low
number of PPEP that return a protected value, the
absolute number ranges from 51–69 entries. Another
unexpected result is that runtime exceptions occur
with a frequency that is about as high as protected
broadcast senders. Besides the already mentioned ex-
ample within the PowerManagerService, we found
occurrences in UI widget classes and even in the
default XML parsing library on Android.
Appendix B gives more detailed statistics on pro-

tected resources, as well as a manual validation and
assessment of the use of RTE in the framework.

7 Permission Analysis

Building on top of our new insights we re-visit an im-
portant aspect of Android’s permission specification,
that is permission mapping between permission check
and SDK method, and further introduce permission
locality to study which framework components per-
form which permission checks. To this end we extend
Axplorer as follows:

1) A PPEP only indicates the presence of a
permission check in the control-flow from this

10

entry-point, but there is no information yet about
the number of checks or the concrete permission
strings. We extend our slicing-based approach to also
resolve the permission strings in common permission
check API invocations (e.g., as defined in the
Context class). Non-constant strings are resolved in
a similar way like message codes in Section 5. From
520 distinct permission checks found in API level 16,
we were able to resolve 99% of the permission strings.
Among the failing cases, one case was located in the
ActivityManagerService$PermissionController
class where the permission string is an argument of
the entry point method, which is only called from
native code and hence was not statically resolved.
2) Entry class interconnection, i.e., RPC tran-

sitions to other PPEP (see Section 6.1), usually
accumulates all permissions required by the ad-
ditionally called entry classes for the UID that
called the first entry class in the control-flow.
However, those transitions are irrelevant for per-
mission analysis when the RPC is located be-
tween calls to Binder.clearCallingIdentity and
Binder.restoreCallingIdentity. Clearing the
calling UID in the framework’s bound services re-
sets it from the calling app’s UID to the privileged
system server UID. Thus, outgoing IPC edges after
clearing and before restoring the UID should be ig-
nored in permission analysis, since the additional
PPEP are called with a UID that is different from
the calling app’s UID.
3) We add a light-weight SDK analysis to reason

about required permissions of documented APIs. To
this end, we conduct a reachability analysis from pub-
lic SDK methods to framework EPs (SDK to frame-
work layer in Figure 1). Combining this mapping
with the mapping from framework EPs to permis-
sions creates a permission map for the documented
API.

7.1 Re-Visiting Permission Mapping
The Stowaway project [32] were the first to generate
a comprehensive permission map for Android 2.2.
Their dynamic analysis approach (feedback directed
API fuzzing) generates precise but incomplete results.
Moreover, the involved manual effort makes it diffi-
cult to re-use it for newer API versions. PScout [7]
improved on this situation by statically analyzing
the framework code, thus increasing the code cover-
age. In direct comparison PScout’s results contain
notably more permission mappings. To handle the
complexity induced by the framework size, PScout
resorts to low-precision data models based on class
hierarchy information. In the following, we demon-

strate that this has negative implications for their
resulting permission map. Using our insights we pro-
vide permission mappings that call the validity of
prior mappings into question.
We compare our results with PScout using their

latest available results (for Android 4.1.1) 3. Since we
exclude Intent and ContentProvider permissions,
which both require supplemental analysis effort such
as manifest or URI object parsing, we restrict the
comparison to un-/documented APIs. For the eval-
uation we include the standard system apps and
make identical assumptions as PScout, i.e., we as-
sume that any permission found for a particular API
is indeed required (a more precise analysis would
require path-sensitivity). Moreover, like PScout, we
did not conduct a native code analysis.

7.1.1 Documented API map

Figure 3 shows for our documented API map (SDK
EP to permissions) how often a certain permission
is required. For some permissions PScout reports
higher numbers while for others Axplorer reports
higher numbers. Since the results are fairly devi-
ating, we manually inspected various cases, includ-
ing a full analysis of NFC and bluetooth, to ver-
ify correctness of our generated numbers. PScout’s
higher method count, particularly for the two cases of
NFC and bluetooth, originates from adding package-
protected methods that are not exposed to app de-
velopers and from improper handling of the @hide
javadoc4 attribute, resulting in an overcounting of the
documented API methods. Our higher numbers of
BROADCAST_STICKY and SET_WALLPAPER mainly re-
fer to abstract methods from the Context class that
are implemented in its subclass ContextWrapper and
then inherited by 18 non-abstract subclasses (for API
16). Instead, PScout only lists those methods for the
Context/-Wrapper class, thus missing to count the
non-abstract subclasses.
Figure 4 provides a different view of the map-

ping by showing the distribution of required permis-
sions per API. The main difference is the smaller
number of outliers in our data set: four mappings
with three or more required permissions, compared
to 58 such outliers in the PScout data set. While
the different results in Figure 3 mainly originate
from technical shortcomings in the SDK analysis,
Figure 4 hints at the different quality of the un-
documented API map as result of a more precise

3We use PScout’s results as published on their website at
http://pscout.csl.toronto.edu. Last visited 01/25/2016.

4EP methods annotated with the @hide attribute are not
included in the SDK.

11

http://pscout.csl.toronto.edu

1
1

1
1

1
1

1
11

2
3

2
3

2
2

2
16

2
2

3
3

3
24

3
8

4
4

5
8

6
18

6
6

7
7

8
8

8
9

9
11

12
22

12
17

13
13

18
20

21
21

30
45

45
62

48
9

58
10

61
83

ACCESS_LOCATION_EXTRA_COMMANDS

SET_TIME_ZONE

SET_WALLPAPER_HINTS

USE_CREDENTIALS

CHANGE_WIFI_MULTICAST_STATE

GET_TASKS

KILL_BACKGROUND_PROCESSES

MANAGE_ACCOUNTS

REORDER_TASKS

DISABLE_KEYGUARD

GET_ACCOUNTS

VIBRATE

CHANGE_NETWORK_STATE

ACCESS_NETWORK_STATE

MODIFY_AUDIO_SETTINGS

SEND_SMS

AUTHENTICATE_ACCOUNTS

ACCESS_MOCK_LOCATION

READ_PHONE_STATE

ACCESS_WIFI_STATE

BLUETOOTH_ADMIN

CHANGE_WIFI_STATE

USE_SIP

ACCESS_COARSE_LOCATION

ACCESS_FINE_LOCATION

WAKE_LOCK

BLUETOOTH

BROADCAST_STICKY

SET_WALLPAPER

NFC

0 25 50 75
Number of documented API mappings

Axplorer
PScout

Figure 3: Number of documented APIs per permission.

framework analysis (see next Section 7.1.2). PScout’s
more light-weight framework analysis results in an
over-approximation of permission usage of EPs. For
their outliers with more than five permissions in
the ConnectivityManager class they either over-
approxmiate the receivers of a sendMessage call
and/or did not resolve the message code and the
correct path in the handleMessage method. In such
cases the over-approximation in the framework analy-
sis negatively influences the quality of the SDK map
when IPC calls from the SDK to the application
framework are connected. We manually validated all
outliers and found that no method actually requires
more than three permissions, thus contradicting the
PScout results. The four outliers in our dataset
check at most two permissions, independent of the
EP call arguments. Additional permission checks
might be required for specific arguments/parameters.
For instance the setNetworkPreference(int) func-
tion of the ConnectivityService will tear down a
specific type of network trackers depending on a pref-
erence integer argument. Some subtypes such as
the BluetoothTetheringDataTracker require both
bluetooth permissions to execute this functionality
while other subtypes require no additional permis-

314
365

34 46
4

33
0 4 0 19 0 1 0 1

0

100

200

300

400

1 2 3 4 5 6 7

Number of required permissions

D
oc

um
en

te
d

A
P

I c
ou

nt Axplorer (Total: 352)
PScout (Total: 469)

Figure 4: Number of permissions required by a docu-
mented API.

sion. Adding parameter-sensitivity to the analysis is
required to resolve such cases automatically and to
annotate permission checks with conditions.

7.1.2 Undocumented API map

A fair, direct comparison of permission maps for
undocumented APIs is unfortunately very difficult
due to shortcomings in the original paper. Although
PScout did not explicitly define the term undocu-
mented API, we assume after manual inspection of
their results that it refers to the publicly exposed
framework interfaces and covers any functionality
that can be called from application level (indepen-
dent of whether it is provided by SDK or system
apps). Hence we refer to undocumented API as the
entire set of framework entry points (cf. Section 4.1).

In contrast to PScout’s documented API map, we
discovered different inconsistencies in their undoc-
umented mappings. Besides valid mappings from
PPEP to permissions, they also include mappings for
unrelated methods. First, public methods of AIDL-
based entry classes (which we define as Entry Points)
are counted up to five times: once in the SDK man-
ager class, in the framework service class, in the AIDL
interface class, and in the auto-generated Stub and
Proxy classes. Second, their mapping contains meth-
ods of StateMachine State classes. StateMachines
are used framework-internally and their functionality
is not exposed to apps. Third, synthetic accessor
methods as well as methods of anonymous inner
classes are reported. We assume that this problem is
related to the lack of a concise entry point definition
that induces difficulties with the abort criteria during
their backwards analysis starting from permission
checks. In contrast, our forward analysis seems more
suitable in this context, as permission checks are
usually closely located to framework EPs.

Table 1 reports on the numbers of entry points per
API level. For Android 4.1.1, Axplorer found 863
PPEP (33.4% of entry points) that require at least
one permission. These numbers include signature/-

12

OrSystem permissions since this information, al-
though not interesting for app developers, is of inter-
est for understanding the Android permission model
in its entirety. On average we found 1.17 permissions
per PPEP, which leads to a total of 1,012 permission
mappings that cover 129 distinct permissions. This
is a magnitude less than the 32,304 permission map-
pings reported by PScout for normal and dangerous
permissions only. However, due to our more concise
definition of what constitutes public framework func-
tionality and the inclusion of all permission levels,
we argue that our number is more substantiated.

7.2 Permission Locality
The application framework implements a separation
of duty: every bound service is responsible for man-
aging a certain system resource and enforcing per-
missions on access by apps to them. For instance,
the LocationService manages and protects location
related information or the PhoneInterfaceManager
facilitates and guards access to the radio interfaces.
Permission strings already convey a meaning of the
kind of system resource they protect and app develop-
ers might have an intuition where those permissions
are required. We study whether permission checking
also follows the principle of separation of duty and
permissions are checked by only one particular service.
We call this aspect permission locality. A low per-
mission locality indicates that a certain permission
is enforced at different (possibly unrelated) services.
This potentially contributes to the app developer’s
permission incomprehension that can lead to over-
privileged apps [32]. Moreover, a strict separation of
duty, i.e., high permission locality, significantly eases
the task of implementing (and verifying) authoriza-
tion hooks for resources, for instance in the design
of recent security APIs [21, 8]. Consequently, the
permission that protects a set of sensitive operations
is ideally checked only in one associated entry class.
To study the permission locality, we analyze the

checked permission strings and map them to the
enclosing class of the permission check call. In An-
droid v4.1.1 (API level 16) we found that out of
110 analyzed permissions 22 (20%) are checked in
more than one class. Among these permissions, 13
are checked in two classes, 5 in three classes and
4 in four classes. An example for seemingly un-
related classes are LocationManagerService and
PhoneInterfaceManager that both check the dan-
gerous permission ACCESS_FINE_LOCATION. While
the permission is intuitively related to the first ser-
vice, the connection to the latter one becomes only
obvious by looking at the enclosing method that

includes the check (e.g. getCellLocation). Inter-
estingly, PhoneInterfaceManager is not a frame-
work service but included in the telephony system
app. Mixing framework services and system apps for
enforcing identical permissions complicates permis-
sion validation and policy enforcement, since system
apps might be vendor-specific. Grouping permis-
sions by protection level results in 22.2% (12/54) of
normal/dangerous permissions and 17.9% (10/56) of
signature/-OrSystem permissions being checked in
distinct classes. This implies that low permission
locality equally affects all protection levels. Ap-
plying this analysis on API 22 results in a even
lower overall permission locality. Focusing on the
four outliers in API 16, changes in API 22 include
three class renamings, two removals and nine ad-
ditions (cf. Figure 6 in Appendix C). The permis-
sion CONNECTIVITY_INTERNAL more than doubled
the number of classes (10) in which it is enforced.
This evolution of permission checks indicates a dis-
concerting trend to lower permission locality.

Instead, the permission locality should be increased
by, ideally, associating each permission with a single
service. Once a designated owner service has been
identified for each permission, a dedicated permis-
sion check function could be publicly exposed via
its Binder interface, e.g., a method to check the
ACESSS_FINE_LOCATION permission could be added
to the ILocationManager interface. The addition
and removal of callers to such methods then no longer
affects the number of decision points and preserves
the separation of duty for permission checks.

8 Discussion of Other Use-Cases

We briefly discuss further use-cases that can benefit
from our work, particularly from our taxonomy of
protected resources and the insights from our per-
mission locality analysis.

Permission check inconsistencies. Prior work
Kratos has shown that the default permission check
is inconsistent and can lead to attacks [33]. However,
this approach explicitly did not make the attempt to
identify protected resources in Android’s application
framework but instead relied on arbitrary shared code
as heuristic to identify security relevant hotspots in
the framework’s code base. While this approach has
successfully demonstrated the need for such analy-
sis, we argue that using our definition of protected
resources as refinement of shared code can further
improve the precision of their analysis, since, by defi-
nition, protected resources describe sensitive opera-
tions. False positives originating from shared logging

13

or library code are automatically eliminated then.
Distilling a more concise definition of field-update
and native method call resources from our high-level
taxonomy is a promising future work. An example
for such refinement is the removal of non-relevant
field updates of a this reference within constructors.
As there is no prior state for this object, such updates
must not be flagged as protected resource.

Authorization hook placement. Different An-
droid framework extensions [26, 46, 29, 12, 21, 8]
augment the application framework with authoriza-
tion hooks in a best effort approach. On commodity
systems, a comparable situation for the Linux and
BSD kernels has been improved through a long pro-
cess that established a deeper understanding of the
internal control and data flows of those kernels and
that allowed development of tools to verify or auto-
mate placement of authorization hooks. A similar
evolution for Android’s application framework has
yet been precluded due to open technical challenges:
first, one must be able to analyze control and data
flows in the framework across process and service
boundaries; second one must be able to track the
execution state of the framework service along its
internal control and data flows (e.g., tracking the
availability of the subject identity); third, one has to
establish a clear and very specific understanding of
the protected resources of each service. This work
at hand addresses the first of these challenges and
provides necessary permission locality information
to implement comprehensive, coarse-grained enforce-
ment models. Additionally, with our high-level tax-
onomy of protected resources we made a first step
towards solving the third challenge.

9 Conclusion

In this paper, we studied the internals of the An-
droid application framework, in particular challenges
and solutions for static analysis of the framework,
and provided a first high-level classification of its
protected resources. We applied our gained insights
to improve on prior results of Android permission
mappings, which are a valuable input to different
Android security research branches, and to introduce
permission locality as a new aspect of the permis-
sion specification. Our results showed that Android
permission checks violate the principle of separation
of duty, which might motivate a more consolidated
design for permission checking in the future. To allow
app developers and independent research to bene-
fit from our results, we published our data sets as

well as lint rules for our permission mappings for the
Android Studio IDE at http://www.axplorer.org .

Acknowledgments

This work was supported by the German Fed-
eral Ministry for Education and Research (BMBF)
under project VFIT (16KIS0345) and SmartPriv
(16KIS0377K) through funding for the Center for IT-
Security, Privacy and Accountability (CISPA) and
the initiative for excellence of the German federal
government.

References
[1] Soot - Java Analysis Framework. http://sable.github.

io/soot/, 1999.
[2] T.J. Watson Libraries for Analysis (WALA). http://

wala.sf.net, 2006.
[3] Anderson, J. P. Computer security technology planning

study, volume ii. Tech. Rep. ESD-TR-73-51, Deputy for
Command and Management Systems, HQ Electronics
Systems Division (AFSC), L. G. Hanscom Field, Oct.
1972.

[4] Android Developer Documentation. Bound services.
http://developer.android.com/guide/components/
bound-services.html. Last visited: 05/08/2015.

[5] Arzt, S., Bodden, E., and Rasthofer, S. A machine-
learning approach for classifying and categorizing An-
droid sources and sinks. In Proc. 21th Annual Network
and Distributed System Security Symposium (NDSS ’14)
(2014), The Internet Society.

[6] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bar-
tel, A., Klein, J., le Traon, Y., Octeau, D., and
McDaniel, P. Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for An-
droid apps. In Proc. ACM SIGPLAN 2014 Conference
on Programming Language Design and Implementation
(PLDI 2014) (2014).

[7] Au, K. W. Y., Zhou, Y. F., Huang, Z., and Lie, D.
Pscout: Analyzing the android permission specification.
In Proc. 19th ACM Conference on Computer and Com-
munication Security (CCS ’12) (2012), ACM.

[8] Backes, M., Bugiel, S., Gerling, S., and von Styp-
Rekowsky, P. Android Security Framework: Extensible
multi-layered access control on Android. In Proc. 30th
Annual Computer Security Applications Conference (AC-
SAC ’14) (2014), ACM.

[9] Backes, M., Bugiel, S., Hammer, C., Schranz, O.,
and von Styp-Rekowsky, P. Boxify: Full-fledged App
Sandboxing for Stock Android. In Proc. 24th USENIX
Security Symposium (SEC ’15) (2015), USENIX.

[10] Backes, M., Gerling, S., Hammer, C., Maffei, M.,
and von Styp-Rekowsky, P. Appguard - enforcing user
requirements on Android apps. In Proc. 19th Interna-
tional Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS ’13) (2013).

[11] Blackshear, S., Gendreau, A., and Chang, B.-Y. E.
Droidel: A general approach to android framework mod-
eling. In Proc. ACM SIGPLAN Workshop on State of
the Art in Program Analysis (SOAP’15) (2015), ACM.

14

http://sable.github.io/soot/
http://sable.github.io/soot/
http://wala.sf.net
http://wala.sf.net
http://developer.android.com/guide/components/bound-services.html
http://developer.android.com/guide/components/bound-services.html

[12] Bugiel, S., Heuser, S., and Sadeghi, A.-R. Flexible
and fine-grained mandatory access control on Android
for diverse security and privacy policies. In Proc. 22nd
USENIX Security Symposium (SEC ’13) (2013), USENIX
Association.

[13] Cao, Y., Fratantonio, Y., Bianchi, A., Egele, M.,
Kruegel, C., Vigna, G., and Chen, Y. EdgeMiner: Au-
tomatically Detecting Implicit Control Flow Transitions
through the Android Framework. In Proc. 22nd Annual
Network and Distributed System Security Symposium
(NDSS ’15) (2015), ISOC.

[14] Chaudhuri, A., Fuchs, A., and Foster, J. SCanDroid:
Automated security certification of Android applications.
Tech. Rep. CS-TR-4991, University of Maryland, 2009.

[15] Edwards, A., Jaeger, T., and Zhang, X. Runtime ver-
ification of authorization hook placement for the Linux
security modules framework. In Proc. 9th ACM Confer-
ence on Computer and Communication Security (CCS
’02) (2002), ACM.

[16] Ganapathy, V., Jaeger, T., and Jha, S. Automatic
placement of authorization hooks in the Linux Security
Modules framework. In Proc. 12th ACM Conference
on Computer and Communication Security (CCS ’05)
(2005), ACM.

[17] Gibler, C., Crussell, J., Erickson, J., and Chen, H.
Androidleaks: automatically detecting potential privacy
leaks in android applications on a large scale. In Proc.
5th international conference on Trust and Trustworthy
Computing (TRUST ’12) (2012), Springer-Verlag.

[18] Gordon, M. I., Kim, D., Perkins, J. H., Gilham, L.,
Nguyen, N., and Rinard, M. C. Information flow anal-
ysis of android applications in DroidSafe. In Proc. 22nd
Annual Network and Distributed System Security Sym-
posium (NDSS ’15) (2015), ISOC.

[19] Gorla, A., Tavecchia, I., Gross, F., and Zeller, A.
Checking app behavior against app descriptions. In Proc.
36th International Conference on Software Engineering
(ICSE ’14) (2014), pp. 1025–1035.

[20] Grace, M., Zhou, W., Jiang, X., and Sadeghi, A.-R.
Unsafe exposure analysis of mobile in-app advertisements.
In Proc. 5th ACM conference on Security and Privacy
in Wireless and Mobile Networks (WISEC ’12) (2012),
ACM.

[21] Heuser, S., Nadkarni, A., Enck, W., and Sadeghi, A.-
R. Asm: A programmable interface for extending android
security. In Proc. 23rd USENIX Security Symposium
(SEC ’14) (2014), USENIX.

[22] Huang, H., Zhu, S., Chen, K., and Liu, P. From system
services freezing to system server shutdown in android:
All you need is a loop in an app. In Proc. 22nd ACM
Conference on Computer and Communication Security
(CCS’15) (2015), ACM.

[23] Jeon, J., Micinski, K. K., Vaughan, J. A., Fogel,
A., Reddy, N., Foster, J. S., and Millstein, T. Dr.
Android and Mr. Hide: Fine-grained security policies on
unmodified Android. In Proc. 2nd ACM workshop on
Security and privacy in smartphones and mobile devices
(SPSM ’12) (2012), ACM.

[24] Li, L., Bartel, A., Bissyandé, T. F., Klein, J.,
Le Traon, Y., Arzt, S., Rasthofer, S., Bodden, E.,
Octeau, D., and Mcdaniel, P. IccTA: Detecting Inter-
Component Privacy Leaks in Android Apps. In Proc.
37th International Conference on Software Engineering
(ICSE ’15) (2015).

[25] Lu, L., Li, Z., Wu, Z., Lee, W., and Jiang, G. CHEX:
Statically Vetting Android Apps for Component Hijacking
Vulnerabilities. In Proc. 19th ACM Conference on Com-
puter and Communication Security (CCS ’12) (2012),
ACM.

[26] Nauman, M., Khan, S., and Zhang, X. Apex: Ex-
tending Android permission model and enforcement with
user-defined runtime constraints. In Proc. 5th ACM Sym-
posium on Information, Computer and Communication
Security (ASIACCS ’10) (2010), ACM.

[27] Octeau, D., Luchaup, D., Dering, M., Jha, S., and
McDaniel, P. Composite Constant Propagation: Ap-
plication to Android Inter-Component Communication
Analysis. In Proc. 37th International Conference on
Software Engineering (ICSE ’15) (2015).

[28] Octeau, D., McDaniel, P., Jha, S., Bartel, A., Bod-
den, E., Klein, J., and Le Traon, Y. Effective inter-
component communication mapping in Android with
Epicc: An essential step towards holistic security anal-
ysis. In Proc. 22Nd USENIX Conference on Security
(SEC ’13) (2013), USENIX Association.

[29] Ongtang, M., McLaughlin, S. E., Enck, W., and Mc-
Daniel, P. Semantically rich application-centric security
in Android. In Proc. 25th Annual Computer Security
Applications Conference (ACSAC ’09) (2009), ACM.

[30] Pandita, R., Xiao, X., Yang, W., Enck, W., and Xie,
T. Whyper: Towards automating risk assessment of
mobile applications. In Proc. 22nd USENIX Security
Symposium (SEC ’13) (2013), USENIX.

[31] Pearce, P., Porter Felt, A., Nunez, G., and Wagner,
D. AdDroid: Privilege separation for applications and
advertisers in Android. In Proc. 7th ACM Symposium on
Information, Computer and Communications Security
(ASIACCS ’12) (2012), ACM.

[32] Porter Felt, A., Chin, E., Hanna, S., Song, D., and
Wagner, D. Android permissions demystified. In Proc.
18th ACM Conference on Computer and Communication
Security (CCS ’11) (2011), ACM.

[33] Shao, Y., Ott, J., Chen, Q. A., Qian, Z., and Mao,
Z. M. Kratos: Discovering inconsistent security policy
enforcement in the android framework. In Proc. 23rd
Annual Network and Distributed System Security Sym-
posium (NDSS ’16) (2016), ISOC.

[34] Shekhar, S., Dietz, M., and Wallach, D. S. Ad-
split: Separating smartphone advertising from applica-
tions. In Proc. 21st USENIX Security Symposium (SEC
’12) (2012), USENIX Association.

[35] Song, D., Zhao, J., Burke, M. G., Sbirlea, D.,
Wallach, D., and Sarkar, V. Finding tizen secu-
rity bugs through whole-system static analysis. CoRR
abs/1504.05967 (2015).

[36] Tan, L., Zhang, X., Ma, X., Xiong, W., and Zhou, Y.
Autoises: Automatically inferring security specifications
and detecting violations. In Proc. 17th USENIX Security
Symposium (SEC ’08) (2008), USENIX.

[37] The Android Open-Source Project. Security-
Enhanced Linux in Android. http://source.android.
com/devices/tech/security/selinux/index.html. Last
visited: 07/27/2015.

[38] Vidas, T., Christin, N., and Cranor, L. F. Curbing
android permission creep. In Proc. Workshop on Web
2.0 Security and Privacy 2011 (W2SP 2011) (2011).

15

http://source.android.com/devices/tech/security/selinux/index.html
http://source.android.com/devices/tech/security/selinux/index.html

[39] Watson, R., Morrison, W., Vance, C., and Feld-
man, B. The TrustedBSD MAC Framework: Exten-
sible kernel access control for FreeBSD 5.0. In Proc.
FREENIX Track: 2003 USENIX Annual Technical Con-
ference (2003), USENIX Association.

[40] Wei, F., Roy, S., Ou, X., and Robby. Amandroid: A
Precise and General Inter-component Data Flow Analysis
Framework for Security Vetting of Android Apps. In Proc.
21th ACM Conference on Computer and Communication
Security (CCS ’14) (2014), ACM.

[41] Wright, C., Cowan, C., Smalley, S., Morris, J., and
Kroah-Hartman, G. Linux Security Modules: General
security support for the Linux kernel. In Proc. 11th
USENIX Security Symposium (SEC ’02) (2002), USENIX
Association.

[42] Wu, L., Grace, M., Zhou, Y., Wu, C., and Jiang,
X. The impact of vendor customizations on android
security. In Proc. 20th ACM Conference on Computer
and Communication Security (CCS ’13) (2013), ACM.

[43] Yang, Z., and Yang, M. Leakminer: Detect information
leakage on Android with static taint analysis. In Proc.
2012 Third World Congress on Software Engineering
(WCSE ’12) (2012), IEEE Computer Society.

[44] Zhang, X., Edwards, A., and Jaeger, T. Using
cqual for static analysis of authorization hook placement.
In Proc. 11th USENIX Security Symposium (SEC’ 02)
(2002), USENIX.

[45] Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning,
P., Wang, X. S., and Zang, B. Vetting undesirable
behaviors in android apps with permission use analy-
sis. In Proc. 20th ACM Conference on Computer and
Communication Security (CCS ’13) (2013), ACM.

[46] Zhou, Y., Zhang, X., Jiang, X., and Freeh, V. Tam-
ing information-stealing smartphone applications (on
Android). In Proc. 4th International Conference on
Trust and Trustworthy Computing (TRUST ’11) (2011),
Springer-Verlag.

16

Appendix

A Entry Class Interconnection

A standard call graph gives information about the
enclosing method/class of function calls. However,
this information is insufficient to provide information
about the interconnection of framework entry
classes. Instead, the interesting information is
the originating entry class that leads to an RPC
rather than the actual class that encloses the
RPC. To provide better information on the RPC
dependencies of entry classes, Axplorer creates an
RPC map by recording RPCs to other entry classes
and mapping them to the original entries during
control-flow slicing. Figure 5 shows a subgraph of
the overall RPC interconnections between flows
from different entry classes on Android 5.1 that
Axplorer generated. Nodes correspond to entry
classes and are weighted by in-/out-degree, thus
highlighting highly-dependent classes such as
ActivityManagerService. The source of a directed
edge is the originating entry class: the control-flow
starts at an entry method of this class and at some
point along the flow, not necessarily in the same
class, an RPC to the class of the edge target node is
invoked.

Across all four investigated Android versions
there is a median number of three distinct RPC
receivers per entry class in our map. The
ActivityManagerService is an exceptional case
where flows from its entry methods reach 36 dif-
ferent entry classes. These numbers emphasize that
large parts of the framework are strongly connected
and that detailed knowledge about the communica-
tion behavior greatly simplifies further framework
analyses as explained above.

B Evaluation of protected resources

B.1 Statistics on protected resources
Table 2 provides absolute numbers of protected re-
sources by API version and the distribution by re-
source types.

B.2 Manual investigation of RTE
Due to the surprisingly high number of runtime
exceptions and the fact that uncaught RTE
might potentially crash the system, we manually
investigated the corresponding code locations to
better understand their security implications. The

AccountManagerService

UserManagerService

PackageManagerService
ContentServiceSipService

WifiServiceImpl

UsbService

UiAutomationConnection
ContactsProvider2

CountryDetectorService
ProfileProvider

ClipboardService

Trampoline

PendingIntentRecord

WifiScanningServiceImpl

BatteryStatsService
WifiNetworkScoreCache

PackageInstallerService PackageInstallerSession

NetworkPolicyManagerService

ConnectivityService

NetworkStatsService

NetworkScoreService
AppOpsService

NetworkManagementService

MountService

LocationManagerService

EthernetServiceImpl

ActivityManagerService

CommandQueue

WindowManagerService

DropBoxManagerService

MonkeyNetworkMonitor

ProcessStatsService

StatusBarManagerService

BluetoothManagerService

AccessibilityManagerService

LockSettingsService

AudioService

Nat464Xlat

Tethering

DevicePolicyManagerService

AppWidgetServiceImpl

Session
BaseIWindow

What this graph shows
Originating Entry Point (EP)

abstraction
(in graph)

control-flow
(not in graph)

RPC Target EP

Enclosing
class

Figure 5: Subgraph of overall entry class interconnec-
tion via RPCs in Android 5.1. Directed edges show an
RPC to an exposed IInterface method of target node.

source code analysis revealed that these instructions
reside both in Android’s code base and in external
library code. Android, similar to other operating
systems, relies on external libraries for specific
tasks, such as XMLPullParser, Bouncy Castle, and
J-SIP. Integrating library code into such a complex
system usually raises the question on how to handle
unchecked exceptions that are thrown by library
functions. Either the library code is patched, which
might be a tedious maintenance task, or exceptions
are caught at caller site. Although the latter case is
considered bad practice in case of runtime exceptions,
using generic catch handler around library call sites
is the easiest and most reliable approach in this
situation.

Runtime exceptions in the Android code are
thrown to indicate precondition violations, like cru-
cial class fields being null, unrecoverable IO errors, or
security violations. The implications of a runtime ex-
ception differ with respect to code location in which
they are thrown. Exceptions in the application layer,
i.e. in system applications, cause the respective app
to crash. Similarly as for normal apps, they can be
restarted by the user. Sticky system app services are
restarted automatically by the system. Exceptions
thrown in bound services of the SystemServer are
handled in a special way: A system watchdog thread
com.android.server.Watchdog constantly moni-
tors the core services like PowerManagerService and
ActivityManagerService. In case of a crash or
deadlock, it reboots the entire system. Uncaught
runtime exceptions in unmonitored system services
cause the Android Runtime, including Zygote and

17

Android version 4.1.1 (16) 4.2.2 (17) 4.4.4 (19) 5.1 (22)

of protected resources 6,490 6,969 7,488 10,044
- field updates 4,891 (75.36%) 5,268 (75.59%) 5,675 (75.79%) 7,520 (74.87%)
- native method calls 1,433 (22.08%) 1,499 (21.51%) 1,643 (21.94%) 2,305 (22.95%)
- return value 51 (0.79%) 60 (0.86%) 54 (0.72%) 69 (0.69%)
- broadcast sender 65 (1.00%) 72 (1.03%) 53 (0.71%) 78 (0.78%)
- throw runtime exception 50 (0.77%) 70 (1.01%) 63 (0.84%) 72 (0.71%)

Median context depth 8 9 11 9

Table 2: Numbers on protected resources by type and Android version.

the SystemServer to be restarted (hot reboot) while
the kernel keeps running—effects also described in
recent research [22].

C Statistics on permission locality

Table 3 shows a detailed statistic about the number of
permissions in API 16 that are checked in more than
one class, grouped by their protection level. These
numbers imply that there is no apparent correlation
about the relative frequency and the protection level,
in particular between the permissions available to
third-party apps (normal+dangerous) and the ones
reserved for the system. Hence, low permission lo-
cality cases occur across all permission protection
levels.

Protection level # permissions

normal 2/16 (12.5%)
dangerous 10/38 (26.3%)
signature 2/25 (8%)
signatureOrSystem 8/31 (25.8%)

Table 3: Number of permissions in API 16 that are
checked in more than one class grouped by permission
protection level.

Figure 6 lists all four permissions that are checked
in four distinct entry classes in API level 16
(colors denote changes in API 22). In case of
READ_PHONE_STATE, those four classes even reside
in four distinct packages of which one is part of
the telephony system app. Although it may not al-
ways be easy to identify one dedicated service as the
permission owner, an effort might be desirable to
centralize permission checks into as few services as
possible (in best case into a single service). Besides
renamed classes (blue color) as result of a code refac-
toring process, the number of additions and removal
for this small number of examples clearly confirms
that permission checks are violating the separation of
duty and underline the need for central enforcement
points.

Permission : ACCESS_NETWORK_STATE
Level : normal
Checked in :

- com.android.server.ConnectivityService
- com.android.server.ethernet.EthernetServiceImpl
- com.android.server.ThrottleService
- com.android.server.net.NetworkPolicyManagerService
- com.android.server.net.NetworkStatsService

Permission : READ_PHONE_STATE
Level : dangerous
Checked in :

- com.android.internal.telephony.PhoneSubInfoProxy
- com.android.phone.PhoneInterfaceManager
- com.android.internal.telephony.SubscriptionController
- com.android.server.TelephonyRegistry
- com.android.server.net.NetworkPolicyManagerService

Permission : CONNECTIVITY_INTERNAL
Level : signatureOrSystem
Checked in :

- com.android.server.ConnectivityService
- com.android.server.NetworkManagementService
- com.android.server.NsdService
- com.android.server.net.NetworkPolicyManagerService
- com.android.server.net.NetworkStatsService
- com.android.server.ethernet.EthernetServiceImpl
- com.android.server.connectivity.Tethering
- com.android.bluetooth.pan.PanService$BluetoothPanBinder
- com.android.server.wifi.WifiServiceImpl
- com.android.server.wifi.p2p.WifiP2pServiceImpl

Permission : UPDATE_DEVICE_STATS
Level : signatureOrSystem
Checked in :

- com.android.server.power.PowerManagerService$BinderService
- com.android.server.LocationManagerService
- com.android.server.am.BatteryStatsService
- com.android.server.wifi.WifiServiceImpl
- com.android.server.am.UsageStatsService

Figure 6: Permissions checked in four distinct classes
in API 16. Colors denote changes in API 22: renamed
classes (blue), additions (green) and removals (red).

18

	Introduction
	Background
	Android Application Framework
	Permissions

	Related work
	Enabling In-Depth Application Framework Analysis
	Defining Framework Entry Points
	Building a Static Runtime Model
	Identifying Protected Resources

	Implementation
	Framework Complexity Analysis
	Handling Framework Complexity
	Android's Protected Resources

	Permission Analysis
	Re-Visiting Permission Mapping
	Documented API map
	Undocumented API map

	Permission Locality

	Discussion of Other Use-Cases
	Conclusion
	Entry Class Interconnection
	Evaluation of protected resources
	Statistics on protected resources
	Manual investigation of RTE

	Statistics on permission locality

