
Reliable Third-Party Library Detection in Android and its
Security Applications

Michael Backes
CISPA, Saarland University &

MPI-SWS
Saarland Informatics Campus

Sven Bugiel
CISPA, Saarland University

Saarland Informatics Campus

Erik Derr
CISPA, Saarland University

Saarland Informatics Campus

Abstract
Third-party libraries on Android have been shown to be se-
curity and privacy hazards by adding security vulnerabilities
to their host apps or by misusing inherited access rights.
Correctly attributing improper app behavior either to app
or library developer code or isolating library code from their
host apps would be highly desirable to mitigate these prob-
lems, but is impeded by the absence of a third-party library
detection that is effective and reliable in spite of obfuscated
code. This paper proposes a library detection technique that
is resilient against common code obfuscations and that is
capable of pinpointing the exact library version used in apps.
Libraries are detected with profiles from a comprehensive
library database that we generated from the original library
SDKs. We apply our technique to the top apps on Google
Play and their complete histories to conduct a longitudinal
study of library usage and evolution in apps. Our results
particularly show that app developers only slowly adapt new
library versions, exposing their end-users to large windows
of vulnerability. For instance, we discovered that two long-
known security vulnerabilities in popular libs are still present
in the current top apps. Moreover, we find that misuse of
cryptographic APIs in advertising libs, which increases the
host apps’ attack surface, affects 296 top apps with a cu-
mulative install base of 3.7bn devices according to Play. To
the best of our knowledge, our work is first to quantify the
security impact of third-party libs on the Android ecosystem.

1. INTRODUCTION
Third-party libraries have become a fixed part of mobile

apps. Developers use them to, e.g., monetize their apps
through advertisements, integrate their apps with online so-
cial media, include single-sign-on services, or simply leverage
utility and convenience libraries for their apps’ functionality.
However, third-party libraries are a double edged sword:

While they can provide convenience for the app developer
and can greatly enhance their host apps’ features, they also
have been shown to be a hazard to the end-users’ privacy
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’16, October 24–28, 2016, Vienna, Austria
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978333

and security. A number of prior studies [10, 14, 4, 30, 34] has
demonstrated that such libraries exhibit questionable privacy
practices. For instance, they leak user-private information,
exploit their host app’s privileges, or track users. Two re-
cent incidents of such questionable practices were revealed
in the popular SDKs of Taomike—China’s biggest mobile ad
provider—and Baidu, that were found to be secretly spying
on users and uploading their SMS to remote servers [37] and
opening backdoors to the users’ devices [35], respectively. In
addition to such privacy violations, third-party libs increase
the attack surface of their host apps when they do not ad-
here to security best practices and, hence, become a liability
for the users’ security. In the recent past, even popular li-
braries by reputable software companies, such as Facebook
and Dropbox, were affected by highly severe vulnerabilities.
The found vulnerabilities could lead to the leakage of sensi-
tive data to publicly readable data-sinks [26], code injection
attacks [28, 39], account hijacking [36], or linking a victim’s
device to an attacker-controlled Dropbox account [8].
Given the high prevalence of third-party libraries in apps

and consequently their high impact on the health of the en-
tire smartphone ecosystem, it is of no surprise that dedicated
research has investigated new mechanisms to sandbox or
remove libs, with a strong focus on advertisement libs [31, 27,
44, 30]. Yet, these proposals make one crucial assumption
that currently limits them in their effectiveness: they assume
that libraries can be clearly identified, either through devel-
oper input [27] or inspection of the app’s code [31, 44, 30].
Reliably identifying libraries, however, forms a formidable
and yet unsolved technical challenge. First, third-party li-
braries are tightly integrated into their host app by statically
linking them during the app’s build process into the app’s
bytecode, thus blurring the boundaries between app and
library code. Second, app developers commonly make use
of bytecode obfuscation tools, such as ProGuard [16]. One
side-effect-free bytecode obfuscation technique is identifier
renaming. It turns identifiers into short, non-meaningful
strings, i.e. a package name com.google is transformed into
a.c. Naïve library detection approaches based on identifier
matching, like in [34, 14, 31, 44] or applied by third-party ad
detector apps, fail even to this simple obfuscation technique.
Another problem, caused by the inability to reliably detect

third-party libraries within applications, is the lack of ac-
countability for privacy and security violations. For instance,
a wide range of security-related analyses studied apps for
privacy and security issues and raised awareness for vari-
ous problem areas, including privacy leaks [12, 2, 42, 13, 3],
permission usage [43], dynamic code loading [28], SSL/TLS

http://dx.doi.org/10.1145/2976749.2978333

(in-)security [25, 11], or (mis-)use of cryptographic APIs [9].
However, without being able to distinguish app developer
code from third-party library code, the reported results are
on a per-app basis and do not distinguish whether bad or
improper behavior originates from app or library developers.
To increase efficiency of library sandboxing mechanisms

and to be able to hold the correct principal (app or lib
developer) accountable for security and privacy violations, a
reliable and precise third-party library detection is required
that is resilient against common obfuscation techniques.

Our contributions.
In this paper, we make two tangible contributions: First,

we present an efficient and reliable approach for detecting
third-party libraries within Android apps (see Section 4). By
analyzing the original library SDKs, we extract profiles that
are resilient to common obfuscation techniques, such as iden-
tifier renaming and API hiding. To achieve these properties
our approach is based on class hierarchy information only
and is independent of the libraries’ code. Still, our profiles
are fine-grained enough to not only detect distinct libraries,
but also the exact version used in an app. For the actual
library detection, we devised a profile matching algorithm
that reports whether an exact copy of a given library version
was matched. In the negative case, either because the correct
version is missing in our database or dead-code elimination
was applied to app code, a similarity score indicates the best
matching profile for the library code in the app.
Second, we use our library detection technique in a lon-

gitudinal study of third-party libraries included in the top
apps on Google Play (see Section 6). In this study, we are
interested in finding answers to security- and privacy-related
questions about libraries, such as “How prevalent are third-
party libraries in the top apps and how up-to-date are the
library versions?”, “Do app developers update the libs included
in their apps and how quickly do they update?”, or “How
prevalent are vulnerabilities identified in prior research [28,
9] in libraries and how many apps are affected?” To answer
these questions, we first built a comprehensive repository of
third-party libraries and applications (see Section 5). Our
library set contains 164 libraries of different categories (Ad-
vertising, Cloud,..) and a total of 2,065 versions. We then
collected and tracked the version histories for the top 50
apps of each category on Play between Sep 2015 and July
2016, accumulating to 96,995 packages from 3,590 apps. We
complemented this database with meta-information, such
as app and library release dates, which we collected from
public sources or developer websites. Based on this data set,
we show that app developers commonly neglect updates of
third-party libraries. By analyzing the time-to-fix of two
recent security/privacy incidents of the Facebook and Drop-
box SDKs [36, 8], we show that this developer negligence
in updating libraries exposes end-users to large windows
of opportunities for attacks (e.g., on average 190 days for
51 apps with a vulnerable Facebook SDK in our data set).
Lastly, we scan our library set for presence of API misuse
vulnerabilities [28, 9] that would expose the libs’ host apps
to cryptanalytic and code injection attacks and discover 18
vulnerable libs (61 versions), which together affect 296 apps
with a cumulative install base of 3.7bn. Overall, our work
constitutes the first longitudinal security study of third-party
libraries in the Android ecosystem. We provide the first valu-
able insights into the security-impact of libraries and as such

motivate future work on improving library updatability on
Android. In summary, we make the following contributions:
1) We are the first to devise a light-weight and effective
approach (LibScout1) to detect third-party libraries in An-
droid apps that is resilient to common obfuscation techniques
and capable of pinpointing exact library versions.
2) We created a large third-party library database including
164 distinct libraries with 2,065 versions, which we profile.
We collected the version history of 3,590 top apps on Play
for a total of 96,995 distinct packages. We complement those
databases with meta-data such as app/library release dates.
3) We conduct a longitudinal study of third-party libs in our
app set to investigate their prevalence, the update frequency
of apps and of libs, as well as the impact of app popularity
and library API stability on the lib update frequency.
4) We study time-to-fix and vulnerability windows of apps
that include vulnerable library versions (at the example of
recently reported incidents of the popular Facebook and
Dropbox SDK). Our results show large windows of opportu-
nity for attackers against apps including those libraries.
5) Lastly, we re-apply existing app analysis techniques to
library code to investigate improper usage of dynamic code
loading and crypto APIs. We identify 61 library versions that
affect 296 top apps on Play with a cumulative install-base of
3.7bn users and expose these apps to cryptanalytic attacks.

2. RELATED WORK
Code and app clone detection techniques for Android apps

have been studied in many different respects. Prior work
computed the similarity between apps using code-based simi-
larity techniques [5, 17, 48] or by extracting semantic features
from program dependency graphs [6, 7].
Other approaches are tailored to third-party libraries on

Android, e.g., by employing the concept of whitelisting pack-
age names to detect libraries within app code [14, 4, 5].
As such approaches fail to cope with even simple obfusca-
tion techniques such as identifier renaming, more robust
approaches based on machine learning or code clustering
have been investigated. AdDetect [24] and PEDAL [20] use
machine-learning to detect advertising libraries. AdDetect
uses hierarchical package clustering to detect (non-)primary
modules of apps whereas PEDAL extracts code-features from
library SDKs and uses package relationship information to
train a classifier to detect libraries even when identifiers are
obfuscated. AnDarwin [7] andWuKong [40] detect app clones
with high accuracy by filtering library code that is detected
by means of code clustering techniques. Such approaches
rely on the assumptions that libraries are pervasively used
by many apps, and that app developers do not modify the
library. However, this second assumption is unrealistic, since
automatic/manual dead-code elimination during app build-
ing will necessarily modify the library code2. Moreover, these
approaches only provide binary classifications since they can-
not name the concrete library versions used within the apps.
The recent LibRadar [22] extends WuKong’s clustering ap-
proach and generates unique profiles for each detected cluster.
Profiles are generated from the frequency of API calls within
distinct packages in a cluster and can subsequently be used
for fast library detection. With this approach, LibRadar
1https://projects.cispa.uni-saarland.de/derr/libscout
2https://developer.android.com/studio/build/shrink-code.html

https://projects.cispa.uni-saarland.de/derr/libscout
https://developer.android.com/studio/build/shrink-code.html

Allatori dashO DexGuard DexProtector DIVILAR ProGuard Stringer
[32] [29] [15] [18] [47] [16] [19]

API hiding (*) – – 3 3 – – –
Class encryption – – 3 3 – – –
Control-flow randomization (*) 3 3 – – – – –
Identifier renaming (*) 3 3 3 3 – 3 3
String encryption (*) 3 3 3 3 – – 3
Virtualization-based protection – – – – 3 – –

Table 1: Feature comparison of Android app obfuscators. Our approach is robust against features marked with (*).

was able to find 29K potential libraries on a large corpus of
Google Play apps. This number presumably constitutes an
over-approximation, since the original code clustering and
the subsequent feature extraction are not performed on the
original libraries. This lack of ground truth produces false
positives when multiple libraries have the same root package
(e.g. com.google for the various Google Play Service libraries
and Google libs like Gson/Guice). To avoid such heuristics,
we extract our profiles from the original library binaries. This
comes at the cost of completeness but has several advantages
such as less false positives and the possibility of inferring
exact library versions. In addition, this allows computation
of more reliable similarity values for partial library inclusions
(as a result of code optimizations).

Besides library detection, research has also proposed tech-
niques for privilege separation between host apps and adver-
tising libraries. To this end, AdSplit [31] puts library code
into separate processes, while PEDAL [20] uses an inline
reference monitoring approach to allow users to selectively
enable/disable functionality in libs that requires a permission.
AdDroid [27] uses a system-centric approach and proposes
a new ad-API in Android’s application framework for app
developers to allow privilege separation by construction. As
a more rigorous approach, APKLancet [44] removes malware
and ad library code from an app package. The code to be
removed is identifed through semantic fingerprints that have
previously been extracted from malware/library samples.
A separate line of work studied questions related to secu-

rity and privacy in advertising libraries. Stevens et al. [34]
investigate the permission (mis-)use of ad libs. Book et al. [4]
conducted a longitudinal study of ad lib permissions and
discovered that the absolute number of required permissions
increases over time. However, in contrast to our longitudinal
studies, they estimated the library release dates as the termi-
nus ad quem of the release date of an app that includes the
library. Library profiles are generated by hashing the library
code detected via package name matching. In this case, the
detection only works if the original library code is included
without any modifications. Other approaches analyse pri-
vate data exfiltration [14, 33] and security vulnerabilities
in authentication/authorization SDKs [41]. In Section 7,
we re-apply existing app security analyses to library code
and use LibScout to measure the real-world impact of the
discovered vulnerabilities in our app set.

3. REQUIREMENTS ANALYSIS
Version detection & similarity computation. Related
work on library detection largely strived for completeness by
reducing this problem to code similarity between apps. While
this works well for detecting components within an app, such
approaches always suffer from uncertainty as they are not
based on the ground truth in form of the original library

code. Moreover, this lack of ground truth precludes a more
fine-grained detection including inferrence of the concrete
library version. This information, however, is imperative to
conduct longitudinal studies on the Android ecosystem to
analyze library updatability, compatibility, and identifying
vulnerable versions.
Therefore, we base our approach on the original library

code provided as SDK by the library provider. Although
relying on the original libraries comes with the drawback of
incompleteness, particularly for less prevalent libraries, it is
a necessary trade-off to infer concrete library versions, which
would not be possible without ground truth. In addition
and in contrast to common belief, libraries are often not
included as is but in some modified form. In most of the
cases this refers to bytecode optimization through dead-code
elimination of unused library functionality. To reliably detect
such partially incomplete code fragments in apps, ground
truth is required to compute a similarity value between
library code in the app and original lib versions. To this end,
we build a comprehensive library database (see Section 5)
including the library binary and complementary information,
such as library name, version, and release date (if available).
Robustness against common obfuscation techniques.
A widely-used third-party library detection technique is naïve
package name matching. While package name matching pro-
vides a rough estimation of the different components within
an app, this approach comes with several drawbacks. In the
presence of code obfuscation, such as the commonly used
identifier renaming, detection fails since the original package
names no longer exist. Some libraries, such as the advertis-
ing lib airpush, even use a similar technique to defeat such
naïve detection methods. To get an overview about avail-
able obfuscation techniques for Android other than identifier
renaming, we studied popular obfuscation tools and their
capabilities. A high-level feature comparison is presented
in Table 1 (features like application water-marking or re-
source file encryption are not relevant for our analysis and
therefore omitted). The summary shows that code-based
detection approaches additionally would have to cope with
different kinds of code-obfuscation techniques, such as API
hiding or control-flow randomization. Ideally, a detection
approach should be resilient to all presented obfuscation
techniques. However, depending on the analysis technique
(static or dynamic) inherent limitations apply.

Our approach is based on static analysis, hence dynamic
code loading or class encryption to dynamically create code
at runtime are general limitations. Similarly, virtualization-
based protection, i.e., dex bytecode is replaced by a virtual
instruction set that is interpreted by a custom virtual ma-
chine [47], is out of scope. To still handle the most common
obfuscation techniques (marked with (*) in Table 1), our
approach solely relies on class hierarchy information and does

Figure 1: Generated partial (unobfuscated) package tree
of an app. Numbers denote the classes per package.

not depend on the actual library code. Since integrity of the
library code (e.g., piggybacking malware) is not a concern of
this paper we do not face drawbacks from the design decision
to rely on class hierarchy information.
The next section gives detailed information on our light-

weight detection approach that fulfills these requirements,
while Section 6 evaluate our prototype in terms of accuracy,
memory requirements, and performance.

4. APPROACH
The workflow of our approach consists of two separate

steps. We first extract profiles from any original library
version in our repository. Given this set of profiles we stati-
cally detect libraries in apps by extracting app profiles and
subsequently apply a matching algorithm to check whether
and how libraries match. Profiles are generated from class
hierarchy information only and do not rely on concrete li-
brary code. This is necessary to be robust against code-based
obfuscation techniques such as control-flow randomization
or API hiding. Our profile matching algorithm reports a
similarity score between 0 and 1, indicating whether a library
version was matched exactly, partially or not at all for a given
application. The remainder of this section provides detailed
information on the underlying data structures for the profile
generation and the actual profile matching algorithm.

4.1 Package Tree
Java packages are a technique for organizing classes into

namespaces. Packages are defined using a hierarchical nam-
ing pattern with levels in the hierarchy separated by dots.
Packages that are lower in the hierarchy are usually referred
to as subpackages. By convention, package names are writ-
ten in lower case and companies should use their reversed
Internet domain name as leading package, i.e. google.com
uses a package name com.google.*. App and library devel-
opers usually stick to this convention or at least provide a
namespace that is unlikely to appear in a different software
component. This simplifies library integration in which lib
code is statically linked during the app’s build process.
The structure of the package hierarchy (often depicted as

a tree) therefore gives a rough estimation on the included
libraries in an application. Meta-information such as package
relationships (parent, sibling, child/subpackage) and number
of classes per package are not part of our profiles but will
be used to improve accuracy of our matching algorithm.
Figure 1 shows a partial, un-obfuscated package tree of the
app de.lotum.whatsinthefoto. It includes two third-party
libraries in the com namespace—the Facebook SDK and
Google Admob—and the app code in the de namespace.

Library/App Hash

Package Hash Package Hash

Class Hash Class Hash Class Hash

Method Hash Method Hash Method Hash..

..

..

B
u
ild

 o
rd

e
r

M
a
tc

h
 o

rd
e
r

Figure 2: Merkle tree with a fixed depth of three

We generate the package tree by performing a standard
class hierarchy analysis (CHA). For each application class we
parse its package, i.e. for a class com.google.ads.AdView we
receive an array of package fragments [com, google, ads].
Starting from the root node, tree nodes are traversed in
the order of the package fragment array. Non-existing child
nodes are generated on-demand. Once the array is processed
the class counter of the current tree node is incremented.
This tree representation is used for debugging purposes and
to perform structural checks during profile matching.

4.2 Profile Extraction
For the actual profiles we use a variant of Merkle trees [23].

In these hash trees every non-leaf node is labeled with the
hash of its child nodes. Our tree has a fixed depth of three
where layers represent packages, classes and methods (see Fig-
ure 2). In contrast to the package tree, our Merkle tree is
flattened at the package layer, i.e. each distinct package
is a child of the root node. This allows an efficient and
precise package-based comparison between original libraries
and applications to be tested.
In general, Merkle trees are used to verify contents of

large data structures. To this end, the initial hashes in
the leaf nodes are generated by hashing a piece of data,
e.g. the content of a file. However, relying on actual code
makes our approach susceptible to code-based obfuscation
such as API hiding or control-flow randomization. There-
fore, the method hashes have to be computed from non-
obfuscatable information. For that we use pruned method
signatures. A signature is a string that uniquely identifies a
method within an app. Figure 3 shows an example signature
of method openActiveSession in class Session of package
com.facebook. The method name is followed by the argu-
ment list in brackets and the return type. In a first step
we remove anything but the argument list and return type
which is called descriptor, since any information before the
argument list may be subject to identifier renaming. In the
final step, we replace any non-framework type (framework
types can be looked up in the Android SDK) by the same
placeholder identifier X that can not serve as a type. This
fuzzy descriptor keeps any non-obfuscatable information, but
different application types are no longer distinguishable. The
advantage is that we do not have to record a global type
mapping but this also implies that a single fuzzy descriptor
may match other methods as well. However, the introduced
fuzzyness for a single method is compensated by including
all methods of a particular class. The higher the number
of children (e.g. methods, classes) for a specific node, the
smaller is the probability that two different nodes with the
same number of children match.
To provide a deterministic hash generation for non-leaf

nodes, child hashes are sorted and concatenated before being

signature: com.fb.Session.openActiveSession(android.app.Activity,bool,com.fb.Session$StatusCallback)com.fb.Session
descriptor: (android.app.Activity,bool,com.fb.Session$StatusCallback)com.fb.Session

fuzzy descriptor: (android.app.Activity,bool,X)X

Figure 3: Transforming a method signature to an fuzzy identifier that is robust against identifier renaming

re-hashed. For the hashing, we found that the 128-bit MD5
hash algorithm provides a good trade-off between efficiency
and precision for our use-case. As default, we store the hash
tree excluding the method layer to retrieve space-efficient
profiles. If maximum precision is required, method hashes
can be stored with their original signatures. In addition, we
introduce a publicOnly mode in which only public methods
of public classes are considered during tree generation. While
the resulting profile is less unique, it is, at the same time,
robust against changes of the internal API. We use such
profiles to check library API compatibility in Section 6.

Bytecode normalization.
Before building the hash tree of a component (library or

app), we normalize its bytecode, in particular we remove
anything compiler-generated. This refers to bridge and syn-
thetic methods such as accessor methods in nested classes
with private attributes that are accessed by the enclosing
class. This way we focus on developer-written code only and
abstract from concrete compilers (usually javac for packaged
libraries and dx for apps).
Some libraries have other library dependencies (e.g.

OkHttp requires Okio for some I/O classes). In apps those
dependencies are resolved through static linking. If we an-
alyze OkHttp in isolation, any type specified in Okio will
not appear in the class hierarchy. For generating a fuzzy
descriptor this is not a problem as we can treat such (non-
existing) dependencies like normal library code. Hence, the
application and library profile will not differ in this regard.

4.3 Profile Matching
Our matching algorithm tests whether and how a given

library profile matches an app profile. To this end, for
each library profile a similarity score between zero and one is
computed, one indicating an exact library match. In contrast
to profile extraction, matching is performed top-down in the
Merkle tree. For testing whether a library exactly matches
parts of the application profile it suffices to check whether
all library package hashes are included in the hash tree of
the app. It becomes more complicated if an application only
partially matches the library code, e.g. if the app includes
a library version that is not in the library database or only
parts of the original library are included (as result of a dead-
code elimination). This implies that only a subset of package
hashes matches and the similarity score drops below one.
The higher the score is, the better a given library version
is matched. If exact matching fails, the similarity score is
computed at a deeper tree level, either on class or method
level depending on the desired precision. We define the
similarity score on class level between a library package lp
and an app package ap as follows:

scorec(lp, ap) =
classes in lp that match in ap

classes in lp
∈ [0,1]

This definition tolerates the addition of classes, i.e. the score
does not change if the application package has more classes
than the library packages. However, if the app package con-

tains less classes the similarity score will be smaller than one.
Given that package hashes may no longer match, the question
is which app packages should be compared to which library
packages. A naïve approach would exhaustively compute the
similarity score for any library/app package combination and
take the global maximum, i.e. the set of best matching app
packages. This might introduce false positives when matched
app packages do not have the same root package and/or the
package hierarchy is not preserved. For two library packages
{com.google, com.google.ads} valid candidate packages in-
clude {a.b, a.b.d} but neither {a.b, a.c} nor {a.b, c.d}.
While a.b might be a valid candidate for com.google, the
combination with a.c is invalid as the package hierarchy is no
longer preserved. In the second invalid example, candidates
do not have the same root package (a/c). To overcome this
problem we apply the following four-step approach:

1) Candidate list. We first compute for each library
package (lp) a list of candidate app packages (ap). An app
package is a candidate if at least 50% of its class hashes
match (configurable). An example could look like this:

lp1∶ ap1(0.95), ap2(0.84), ap3(0.75)
lp3∶ ap6(0.91), ap4(0.60)
lp2∶ ap7(0.85), ap9(0.82)

Every candidate list is sorted by score. In addition, li-
brary packages are sorted by similarity score of their highest
candidate match.

2) Package linking. If a library package lp1 with pack-
age name com.foo has app package candidates starting with
the same package name, we can remove candidates with
different root packages. In case identifier renaming has been
applied to the app code, this direct linking no longer works.
For filtering invalid combinations we therefore have to iden-
tify potential root packages. If lp1 matches ap1 with package
name a.b.c we deduce that a.b is one potential library
root package within the app. By applying this to all pairs
<lpi, apj> we receive a list of potential root packages.

3) Partitioning. Instead of exhaustively testing all com-
binations like in the naïve approach, it suffices to compute
the maximum for each partition/root package and then take
the global maximum. For each root package we pre-filter
the candidate list and remove any candidate that does not
start with the current root package. For the remaining list
the maximum is computed exhaustively via backtracking.
To eliminate combinations that do not structurally match
the library package hierarchy, we define an abort criterion
by testing structural equivalence between app packages and
library packages. More formally, backtracking is aborted if
the following requirement is violated:

∀api, apj , lpx, lpy,

api candidateOf lpx, apj candidateOf lpy,

relationship(api, apj) = relationship(lpx, lpy)

relationship(p1, p2) tests whether p1 is parent, sibling, or
child of p2 and in case of a parent/child relationship it fur-
ther determines the package distance (an immediate sub-

package has distance 1). If, for example, the backtracking
algorithm traverses ap1, ap6 the calculation is aborted if
relationship(ap1, ap6) ≠ relationship(lp1, lp3).

4) Global maximum. Finally, we select the maximum
score over the partitions and sum up the matched classes
(denoted as sum-classes). The similarity score on class level
is consequently computed as

simScorec =
sum-classes

of classes in library
∈ [0,1]

We classify a library as partially matched if the score exceeds
a minimum threshold such as 0.6. This value was determined
experimentally to find a good trade-off between false-positives
and false-negatives since a low similarity score might either
result from dead-code removal (partial library inclusion) or
from a library version detected that is not in the database. To
increase precision, the similarity score can also be computed
on method level if method hashes are included in the profiles.

5. LIBRARY AND APP REPOSITORY
In this section, we explain how we established a database

of third-party libraries and of applications, which we use to
evaluate our LibScout tool (Section 6) and on which we
conducted a longitudinal study of third-party libraries used
in the top apps of Google Play (Section 7).

5.1 Library Database
The foundation of our approach is detecting known libraries

in Android apps. This requires setting up a library database
that contains the ground truth in the form of original code
packages for each available library version.

Identification and retrieval of popular libs.
The first task to build a library database is to identify

popular libraries, such as libs that are specifically developed
for Android (e.g., ad and analytics libs) or Java support/u-
tility libraries. In particular advertising libraries are one of
the most prevalent library types for Android. Google’s devel-
oper documentation on AdMob mediation networks3 gives a
good but incomplete view on available ad libraries that are
compatible to its own AdMob library. Another major source
of library statistics is provided by the Android third-party
market AppBrain4. It provides an Ad Detector app to gather
statistics about the market share of popular libs. Libraries
are identified by checking for well-known identifiers, such as
package names, and are categorized into the three groups (ad
networks, social SDKs, and development tools). In addition
to such readily-available information, we manually analyzed
the package trees (cf. Figure 1) of 50 popular apps to identify
additional libraries based on package names.
Following this first bootstrapping step, we retrieve the

identified library binaries and, if possible, their complete
history, since our approach relies on the ground truth in the
form of the original library code. We found that there are
different ways how library developers distribute their SDK.
More and more libraries can be found on the maven central
repository or are hosted on public GitHub repositories. In
these cases it is trivial to retrieve the entire history. Other li-
braries, such as the Facebook SDK, are hosted directly at the
library provider’s website and might have migrated to Maven
3developers.google.com/admob/android/mediation-networks
4http://www.appbrain.com/stats/libraries/

Category # Libraries # Library Versions

Android 51 560
Utilities 41 746
Advertising 40 337
Cloud 16 149
SocialMedia 9 149
Analytics 7 124

Total 164 2,065

Table 2: Number of distinct libs and versions per category

(as is the case for the Facebook SDK). Early versions of
some libraries were distributed as open-source only (without
pre-compiled binaries), hence it took some effort to compile
each version with varying build environments. It gets more
complicated if developer accounts are required to download
a specific library (this is common for advertising libraries
like Tapjoy or Flurry). Moreover, only the most current
versions of some libraries were available. To still retrieve
older versions, tricks like URL modification or searching for
lib versions in known Android projects were required.
For each library version we store the binary code, name

and auxiliary information like version number and release
date, which are usually available via change log or directly
from the host server. Moreover, we categorize each library in
one of the following groups: Advertising, Analytics, Android,
Cloud, Social-Media, and Utilities.

Library Statistics.
Our current database contains 164 distinct libraries with

2,065 versions. Table 2 shows the distribution of library/-
versions across the categories. The database includes the
most popular libraries for each category. For about 26% of
all libraries we got less than four versions, however, at the
same time the database contains more than seven versions
for 55% of the libraries. The mean number of versions per
library is 12.59±1.09. For the advertising library Heyzap we
were able to collect 96 distinct versions. For 2,026 (98.11%)
of the library versions in our database we were able to collect
their release dates. From those release dates, we derive that
the developers of the third party libraries in our data set
release a new version on average every 117±60 days and just
in the first half of 2016 on average every 77 ± 20 days.
On a commodity laptop the average time for profile ex-

traction is 2.8 seconds per lib version. The mean number
of packages, classes, and methods in our library set is <13,
304, 1701>. This even exceeds the code base of many smaller
apps. Outliers include the Google Play Service library with
<85, 3,416, 18,794>. Those results show that many libraries
are very-complex and/or offer a lot of functionality.

5.2 Play Store Crawler and Repository
Next, we provide an overview of how we selected our

sample applications from the Google Play Store and built a
longitudinal version history of those selected apps.

Upper Bound for Version Code.
We bootstrapped building our set of sample applications

and their history by crawling the top 50 apps for each of the
20 categories on the Google Play Store in 2-hour intervals
between September 2015 and July 2016, resulting in 4,666
distinct apps, which we continue to track even after they left

developers.google.com/admob/android/mediation-networks
http://www.appbrain.com/stats/libraries/

83.79%

40,374
70%

80%

90%

100%

0.
0e

+0
0

5.
0e

+0
8

1.
0e

+0
9

1.
5e

+0
9

2.
0e

+0
978%

80%

82%

84%

0 K 25 K 50 K 75 K 100 K
Max Version Code of Sample Apps

R
e
la

tiv
e
 C

u
m

u
la

tiv
e
 F

re
q
u
e
n
cy

Figure 4: Distribution of maximum version codes in our
initial app set and selected threshold for our crawler.

the top 50 lists. We opted for this approach, because prior
studies [38, 46] have established that the Google Play Store
is a “superstar” market in which a small percentage of the
free applications (i.e., the top apps) account for almost all
of the downloads. Thus, our sample set represents the apps
with the largest user bases on Play—together accounting for
almost 46 bn downloads by July 2016 according to Play.
To build the version history for every discovered appli-

cation, the Google Play API can be iteratively queried for
lower version codes. For instance, when our initial app set
contained the application package org.wikipedia with version
code 10, we can iteratively request to download versions 9,
8, 7, etc. of this app package from the server. Unfortunately,
the versioning rules5 for Android apps do not require app
developers to follow any specific scheme except that the ver-
sion code must be monotonically increasing between updates.
This implies that version codes can be distributed all over
the integer value range. As a consequence, we have to de-
termine a reasonable upper bound for the version code to
achieve a good trade-off between coverage of package version
histories and the required time to build the history. Figure 4
illustrates the relative cumulative frequency distribution of
maximum version codes in our app set. While most devel-
opers choose their version codes from the lower end of the
possible value range, some developers choose version codes
from within the range of millions to billions, accounting for
the long tail of version codes (see the subplot in Figure 4).
For our study, we decided to create histories for apps at the

lower end with a maximum version code of 40,374, providing
a coverage of 3,910 apps (83.79%) of all apps in our set.
Moreover, it is noticeable, that the long tail of version codes
has a jump in the CFD around version code 2 ∗ 109. This
stems from the fact that the developers of 64 apps in our set
chose version codes based on the release date (e.g., following
the pattern YYYYMMDDVV, where VV is the revision-per-
day). We additionally included those 64 apps from the long
tail of version codes, since their code immediately reveals
the app version’s release date and we built their history by
iterating version codes in date-format from the discovered
version back to Jan 1, 2012. Those apps increase the coverage
by 1.37%, for a total coverage of 85.16%.

Sampled Version Codes.
Figure 5 provides an overview of our application sample

set after downloading all available versions for the top apps
5developer.android.com/tools/publishing/versioning.html

27.02 ± 1.27 versions per package (z = 1.96)

Max: 7540

100

200

0 200 400 600
Available versions per package (Min=2)

Totally available versions: 96,995

P
a

ck
a

g
e

s
(T

o
ta

l 3
,5

9
0

)

Figure 5: Sampled version codes and version codes per app.

in the initial set. Overall, we have 96,995 packages for 3,590
distinct apps (excluding apps that have only one version
available in our set). This results in an average of about 27
versions per app with a maximum of 754 available versions
for the app com.imo.android.imoimbeta.

Release Dates and Update Frequency.
As a last step in building the sample set for our longitudinal

study of apps, we complemented our sample app database
with release dates for each app version. Since Google Play
only provides the release date for the most recent version of an
app, we collected the release dates of older app versions from
market analysis services such as appannie.com, apk4fun.com,
and appbrain.com. In total, our database contains the release
dates of 75,339 distinct packages (77.67% of 96,995 packages)
for the 3,590 apps for which we retrieved older versions, where
the release dates range from 12/19/2009 to 07/29/2016.
Based on those release dates, we estimate that the devel-

opers of the apps in our sample set release an app update
on average every 62±2.94 days, where the average update
frequency per app has increased since 2010 (e.g., 38±1.53
days in 2015 and only 29±0.99 days in first half of 2016).

6. EVALUATION OF LIB DETECTION
We implement our approach on top of the WALA frame-

work[1]. Our tool LibScout requires an additional 3.5 kLOC.

6.1 Library Profile Uniqueness
We start by answering the question on how effective our

profiles are for distinguishing different library versions and
evaluate the memory requirements for storing our profiles.
Since our profiles are generated with class hierarchy in-

formation only, it is possible that different library versions
have the same profile when only code has changed but no
method interfaces of the public or private APIs of the lib. In
these cases we still detect the library but report the set of
possible versions. For 53/164 (32.3%) of libraries, all versions
have unique profiles. For the 2,065 library versions in our
repository, we found that 1,225/2,065 (59.3%) of profiles
are unique, i.e., we can unambiguously pinpoint the exact
library version. About 40% of all profiles are ambiguous,
i.e., there exist at least two versions with the same profile.
All ambiguous versions occurred in clusters of consecutive
versions. Such clusters are expected for minor version up-
dates in which only bugfixes and minor code changes are
implemented. The average size of such clusters is 2.77 ver-
sions and only two exceptional cases (Amazon Analytics and
braintree payments) exist with a cluster size of 10 in each case.
Although we cannot pinpoint the exact library version for

developer.android.com/tools/publishing/versioning.html
appannie.com
apk4fun.com
appbrain.com

#APKs Ratio Library Category

41,518 41.22% Facebook Social media
30,310 30.10% Gson Utilities
18,026 17.90% Flurry Analytics Analytics
16,336 16.22% Bolts Utilities
14,229 14.13% Crashlytics Android
14,146 14.05% OkHttp Utilities
13,758 13.66% Nine Old Androids Android
12,201 12.11% Facebook Audience Advertising
11,066 10.99% Picasso Android
9,694 9.63% Retrofit Utilities

Table 3: Top 10 detected libraries in our app repository,
excluding Google support and play service libs.

ambiguous profiles, we significantly reduce the search space
for post-analyses (e.g., code inspection) to 2–3 candidate
versions on average.
The size requirement for storing a single profile is lin-

ear to the number of packages, classes, and methods of a
library/app and additionally depends on the chosen hash
function (128 bit MD5). During our experiments, the preci-
sion of our approach did not change with larger hashes. The
largest profile was generated for the Adrally Ad SDK (v2.2.0)
with a size of 220 KB (normal profile without methods).
Including methods and full debug info, such as the original
method signatures, increases the size to a total of 3.1 MB.
However, the average normal profile size is only ≈22 KB.

6.2 Library Prevalence
We apply LibScout with partial matching on our app

dataset to study the prevalence of libraries. In addition, we
automatically extract the root package for each library and
apply a naïve package name detection for cases in which our
profile matching does not report a result. Moreover, we use
the package matching to validate the detection rate of the
profile matching. Table 3 shows the top 10 detected libraries
of our repository in absolute and relative numbers. We
excluded Google support and Play service libraries as they
represent eight of the top 10 libs, with the Android support
v4 library leading with about 80%. Moreover, six Play service
libraries would have been listed in the top 10, since many
developers typically include the complete set of these libraries
although not making use of it. The new list is led by the
popular Facebook SDK that is included by about 40% of
all apps. Further, the list includes advertisement (Facebook
Audience) and tracking libraries as well as commonly used
utility libraries such as Gson, Bolts, and OkHttp.
On average, we detect 13.1 distinct libraries/app. The app

com.science.wishboneapp (various versions) contained the
most libraries (55). By reporting the numbers for profile-only
detection we receive an average of 9.7 libs/app while the
naïve approach finds an additional 3.4 libs/app. There are
two main reasons for our approach to not detect a library
via profile matching. The first reason is an incomplete set of
library versions in our database. This particularly applies to
advertising libraries that are not publicly retrievable, i.e. it
is generally difficult to build a complete library history. The
second reason is that code optimization has been applied
during an app’s build process to remove unused library code.
If the app contains less than 60% of the original lib code
our partial matching algorithm no longer reports a match.
Finally, we checked whether the number of libs/app evolves
over time. To this end, we determined the average number of

0% 20% 40% 60% 80% 100%

Older version (23245) Latest version (9775)

Library up-to-dateness

70.40% / 29.60%

Figure 6: Up-to-dateness of included lib versions across
the most recent versions of all apps in our repository.

0 100 200 300 400 500 600

Number packages

4.x
6.x
8.x
9.x
10.x
11.x
12.x
13.x

18.0.x
19.0.x
19.1.x
20.0.x
21.0.x
22.0.x
22.1.x
22.2.x
23.0.x
23.1.x
23.2.x
23.3.x
23.4.x
24.0.x
24.1.xA

n
d
r
o
i
d

s
u
p
p
o
r
t

v
4

S
D
K

v
e
r
s
i
o
n 1

5
11
8
14

39
19
18

84
167

85
159

227
73

61
317

306
565

202
158

319
132

34

Figure 7: Distribution of Android support v4 SDK versions
for the current top apps on Play.

libraries on the set of earliest app releases and most current
app releases. Between these two sets, LibScout reports a
slight increase of 3.4 on the average library count, i.e. there
is a trend to include more libraries.

7. STUDY OF THIRD-PARTY LIBRARIES
Lastly, we conduct a longitudinal study of third-party

libraries in our app set to investigate important security-
relevant questions such as “How up-to-date are libraries used
in top apps?”, “How quickly do app developers react to dis-
covered vulnerabilities in their included libraries?”, and “How
prevalent is misuse of security APIs in third-party libs?”.

7.1 Up-to-dateness of Libraries in Top Apps
For the most recent versions of all apps in our data set,

we checked whether included third-party libs are up-to-date
or outdated with respect to the app release date. Figure 6
summarizes our results. In almost three-quarter of the cases
(23,245 lib inclusions or 70.40%) the app developer included
an outdated lib version, where the delta to the most recent
library version is one in only 7.99% of all cases and in the
most extreme case 81 versions. In terms of time difference
between library version release and adaption by apps, the
apps in our data set required 324 ± 1 days on average to
include a new library version. This is a rather poor adaption
of newly released lib versions, particularly when considering
that app developers release new versions on average almost
twice as frequent as lib developers (see Section 5). Thus,
we were interested in what potential factors could influence
the adaption of a library. In particular, we investigated the
library distribution channel, app popularity, and the libraries’
public API compatibility.

Distribution channel and app popularity.
A first potential factor is the distribution channel of the

library (cf. Section 5). Two popular libraries, Android sup-
port v4 and Facebook (see Table 3), are employing opposing
strategies: Android support v4 is shipped with Android IDEs

0 20 40 60 80 100 120 140

Number packages

3.0.x
3.5.x
3.6.x
3.7.x
3.8.x
3.14.x
3.15.x
3.16.x
3.17.x
3.18.x
3.19.x
3.20.x
3.21.x
3.22.x
3.23.x
4.0.x
4.1.x
4.2.x
4.3.x
4.4.x
4.5.x
4.6.x
4.7.x
4.8.x
4.9.x
4.10.x
4.11.x
4.12.x
4.13.x
4.14.x

F
a
c
e
b
o
o
k

S
D
K

v
e
r
s
i
o
n

13
20

14
11

8
33

13
4

9
29

39
71

63
38

127
44

59
20

12
33

78
44

58
88

37
49

73
28

49
26

Figure 8: Distribution of Facebook SDK versions for the
current top apps on Play.

(e.g., Android Studio and ADT) and is automatically added
to apps based on their supported Android API levels, while
Facebook prior to version 3.23.0 had to be manually down-
loaded from the developer pages and can since version 3.23.0
be retrieved via the Maven central repository. For Android
support v4 we found that there is a clear bias towards newer
library versions among the top apps (see Figure 7), while the
majority of the top apps contain a (highly) outdated version
of the Facebook SDK (see Figure 8). This indicates that
app developers attend more carefully to the up-to-dateness
of their IDE and its shipped packages than to manually
retrieving external libraries (even from a central repository).
As a potential second factor we considered the app popu-

larity measured in the app’s number of downloads. However,
we could not discover any effect (Kendall’s τ = 0.01 with
p = 0.8 ⋅ 10−7) of an app’s download rank (e.g., “1K”, “50K”,
“10M”) and the time required to adapt a new library version.

Public API compatibility.
Further, we were interested in whether the compatibility

of the libraries’ public APIs, through which app developers
integrate libs, influences lib adaption. For quick adaption
of a new library version, a stable public library interface for
consecutive versions is helpful. Addition of new methods to
the API is less problematic in this regard, while deletion of
methods or changes in the signature (parameter or return
types) might force app developers to adapt their code.
We analyzed all libraries in our database with at least

ten consecutive versions for which we also have the release
dates. This comprises in total 70 distinct libraries. We define
the public API to be stable between consecutive versions,
if there are at most additions of public methods but no
deletions or modifications of existing signatures. The public
API compatibility ranges from 7% (Crittercism lib) to 87%
(Amazon Analytics lib). For this data set, we could not
detect any statistically significant correlation between the
adaption rate of new lib versions and a lib’s API compatibility
(Kendall’s τ = −0.29 with p = 0.2401) or the changes in
the lib’s public API (Pearson’s r = 0.01 with p = 0.7637),
respectively. This warrants further investigation into the
motivation for app developers to adopt lib updates and
potentially other factors, such as library documentation (e.g.,
both Facebook and Android’s support v4 only have slightly
above 50% compatibility on average between updates and

0

2

4

6
Packages with patched/removed Facebook SDK

0

2

4

6

R
e
l
e
a
s
e
d

p
a
c
k
a
g
e
s

/

d
a
y

Packages with vulnerable Facebook SDK (released after patched SDK version)

Ju
l

Oc
t

Ja
n

20
15

Ap
r

Ju
l

Oc
t

Ja
n

20
16

Ap
r

Ju
l

0

2

4

6

Patched SDK v3.16 released (18 Jul 2014)

Vulnerable SDK v3.15 released (12 Jun 2014)

Packages with vulnerable Facebook SDK (released before patched SDK version)

Figure 9: Daily releases of packages with a vulnerable or
patched Facebook library between 04/2014 and 07/2016

they release detailed changelogs and even upgrade guides to
support developers, but have quite different rates of adaption
of their updates among the top apps).

7.2 Detecting Vulnerable Library Versions
We use LibScout to investigate the presence of vulnerable

third-party libraries within our app repository. In particular,
we use two highly severe vulnerabilities from the recent past
as case studies: an account hijacking vulnerability in the
Facebook SDK v3.15 [36] and CVE-2014-8889 of the Drop-
box SDK versions 1.5.4–1.6.1 [8] that allowed attackers to
capture the user’s Dropbox files via vulnerable apps. For
each incident, we investigated the number of affected pack-
ages/apps, their user-base, as well as vulnerability window
and time-to-fix for the affected apps.

Facebook account hijacking.
Facebook released their SDK v3.15 for Android, which

contained an account hijacking vulnerability, on 06/11/2014.
In the histories of our sample set apps, we discovered, in
total, 394 affected packages from 51 distinct apps, when
only considering packages with exact matches of the vulner-
able lib version. For 18 of those apps, we knew the number
of downloads from Play and are able to estimate a lower
bound of 69M downloads of vulnerable packages. For 356
affected packages, our data set contained the release dates
and enabled us to investigate the vulnerability windows and
times-to-fix of those packages. Figure 9 illustrates the re-
leases of vulnerable and fixed packages in our data set, where
we also consider removal of the Facebook lib from the app
as a fix. Most noticeably, the majority of the vulnerable
packages (338, in the middle facet of the figure) were re-
leased after Facebook released the fixed SDK v3.16, in some
cases even still in July 2016, i.e., more than 1.5 years after
the patched SDK. Of the affected apps, 13 apps never re-
leased a fixed version and even their latest version on Play
is still vulnerable. For 33 of the remaining apps, we can
calculate the average vulnerability window and time-to-fix
with absolute certainty (i.e., no gap in release dates and
version history) and their average time-to-fix is 188±55 days
and average vulnerability window is 190 ± 55 days. Those
are worrisomely high numbers that expose the end-users
to unnecessary long vulnerability periods when considering

0

2

4

6
Packages with patched/removed Dropbox SDK

0

2

4

6

R
e
l
e
a
s
e
d

p
a
c
k
a
g
e
s

/

d
a
y

Packages with vulnerable Dropbox SDK (released after patched SDK version)

Ja
n

20
14

Ja
n

20
15

Ja
n

20
16

Ju
l

Ju
l

Ju
l

Ju
l

0

2

4

6

Patched SDK v1.6.2 released (12/05/2014)

Vulnerable SDK v1.5.4 released (03/26/2013)
Vulnerable SDK v1.6.1 released (03/13/2014)

Packages with vulnerable Dropbox SDK (released before patched SDK version)

Figure 10: Daily releases of packages with a vulnerable
or patched Dropbox library between 04/2014 and 07/2016

that Facebook released a fixed version only 36 days after the
vulnerable version (see Figure 9).

Dropbox data stealing.
For the vulnerability of Dropbox SDK versions 1.5.4 and

1.6.1, we found in our sample set 360 affected packages from
23 distinct apps, when only considering exact library matches.
For 11 affected apps our data set contains information on
their downloads, which accumulate to 11M. For 301 packages
we have the release dates available, which allow us to inves-
tigate their time-to-fix and vulnerability windows. Figure 10
depicts the daily releases of patched/vulnerable apps with
the Dropbox SDK and from our data set we derive an average
time-to-fix of 59± 110 days and an average vulnerability win-
dow of 196± 127 days, where the latter one can be explained
by the very delayed release of the patched SDK v1.6.2. Of
the 23 affected apps in our data set, 9 did not release a fixed
version and their vulnerable versions are still the most recent
ones on Play.

7.3 Analysis of security-related APIs
Prior studies [9, 28] have shown that misuse of cryptog-

raphy APIs is widespread among Android apps and that
dynamic code loading by apps can be exploited to hijack
apps. However, the original studies reported their results
on a per-app basis and did not consider the extent to which
third-party libraries contribute to this problem. Thus, we
were interested in how prevalent such misuse is among third-
party libraries and how helpful techniques like LibScout
could be to augment such studies with better accountability.
We focus our analysis of security-related APIs on advertising
libraries since they are the most popular and widespread
type of libraries. For both analyses, we used WALA to create
a set of candidate libraries by scanning the bytecode of the
315 ad samples of 39 distinct ad libs (see Table 2) for the rel-
evant API calls. Since the number of samples is suitable for
manual review, we refrained from re-implementing the origi-
nal analysis methods and manually verified whether security
properties were violated or not in our candidate libraries.
For the crypto API usage, we performed the same six

checks as in prior work (R1-R6 in Table 4). This in-
cludes checks for constant encryption keys (R3), salts/seeds
(R4+R6), and initialization vectors (IV, R2), as well as checks
for the discouraged usage of ECB mode and low number of

Property #Libs/Ver Verified

R1: ECB mode for encryption 5/25 5/25
R2: constant IV for CBC 7/32 4/20
R3: constant symmetric keys 13/60 3/7
R4: static salts for PBE 2/2 2/2
R5: <1000 iterations for PBE 2/2 2/2
R6: static seed for SecureRandom 3/7 2/5

Table 4: Results for crypto API analysis of ad libs showing
candidate and verified libs/versions in our library set.

iterations in password-based encryption (PBE). Table 4 sum-
marizes our findings. The middle column shows the number
of candidate libraries and versions. The last column shows
the verified violations after manually checking the bytecode
of each candidate. Out of all available ad libraries, 10 libs
violate at least one of those properties. Several libs violate
multiple properties, e.g., Adrally (R1,R2,R4,R5,R6), Lead-
bolt (R2,R3,R6), domob (R1+R2) and AppFlood (R4+R5).
In 12 of the 18 verified libs (66%), all versions of those li-
braries were affected and in 14 cases even the latest available
version in our data set was still affected. All of the “fixed”
libraries removed the affected code segment, but not one
actually implemented a proper fix for previously vulnerable
code. The only library (Leadbolt SDK) that modified affected
code, replaced an empty initialization vector (R2) in versions
5.x with constant IV in version 6.0. We used LibScout to
detect the affected application packages in our data set. In
total 2,667 app versions of 296 distinct apps with a cumu-
lative install-base of 3.7bn were affected by those ad libs
with verified crypto misuse. In summary, improper usage of
cryptography APIs is very common among the widespread ad
libs and thus future work should investigate to which extent
prior results [9] must be attributed to the library developers
instead of app developers.
Second, we study dynamic code loading behavior of ad

libs. We follow the approach described in [28] and test
whether code loading is performed via package contexts,
Runtime.exec, or the DexClassLoader. Only 9 out of 39 ad
libs use any form of dynamic code loading. In fact, only the
HeyZap lib does code loading via the package context, but it
only exposes this functionality to app developers. Only six
libraries (33 versions) make use of Runtime.exec to execute
logcat or some shell operations for modifying access rights
of files. Only one version of the ChartBoost SDK contains
a suspicious call to check for the presence of the superuser
binary. The DexClassLoader technique is only used by the
last two Admob versions and one version of Tencent. Both
libs load a supplemental jar/dex file. Hence, in summary,
dynamic code loading is not widespread in ad libs in our
data set and is rather attributed to other principals (e.g.,
app developer or other libraries).

8. DISCUSSION
In Section 7 we studied security vulnerabilities in third-

party libraries and, using LibScout, we were the first to show
to which extent these problems actually affect the current set
of top apps on Google Play. Parts of our analyses re-applied
prior approaches [9, 28] and our results show that third-party
libraries are a contributing factor to those original results,
which reported only per-app results or could only exclude
a small set of libs from their results based on unobfuscated

library package names. Thus, we argue that a lightweight
approach for third-party library detection, like LibScout,
which is resilient against common obfuscation techniques,
can greatly enhance static analysis approaches (e.g., [12, 45,
21, 2, 42, 13, 28, 25, 11]) by allowing them to attribute their
results to the correct principals (app or library developers).
Moreover, our results show that app developers adapt new

library versions only very slowly, even when the currently
used version contains severe security or privacy vulnerabili-
ties. This work does not attempt to uncover the exact reasons
for this slow adaption, but its results surely warrant further
investigation of those root causes and the development of
new ways to motivate or support app developers in adapting
library updates. Potential alleys for this future work could
be the distribution channel of libraries (e.g., central library
repositories like Maven, integration into IDEs, on-device li-
brary services), compatibility of public APIs of libs, or better
communication of library updates to developers (e.g., we
noticed that in many cases there is no CVE entry for library
vulnerabilities and even lib providers do not report/warn
about such incidents in an adequate manner).

Current limitations and future work.
The design choice to extract profiles from the original li-

braries comes with the inherent limitation of completeness.
Therefore, complementary techniques such as WuKong [40] or
Libradar [22] can be useful to detect potential libraries that
are not in LibScout’s database. Currently, our approach
does not detect code-only changes in libraries, however, we
can limit the number of candidate versions to a small set.
To pinpoint the exact version whenever the profiles are ambi-
gious (see Section 6.1), we are experimenting with secondary,
code-based profiles that are generated from dex bytecode
operation types (e.g. invoke or move) after compiling the
library jars to dex bytecode. These secondary profiles are
still resilient to identifier renaming, but could be influenced
by code-based obfuscation such as API hiding.
Although being robust against a larger number of obfus-

cation techniques than related work, more extreme forms
like flattening the package hierarchy would still defeat our
static approach (and any related approach). In this case the
structure of the hierarchy is modified and the boundaries
between app and library code become blurred. Since such
techniques introduce severe side-effects, they are rarely used
in practice. Another open problem is the manual or auto-
matic dead-code elimination of library code. The complete
library code is no longer statically included but only a (small)
subset thereof. Our partial matching algorithm covers this
problem up to the point where only so little library code
is left in the app that the similarity score drops below a
certainty threshold. In general, this is a hard problem that
can not be completely solved with static analyses techniques.
Instead, only solutions in which dependencies have to be
declared explicitly would remedy this problem.
A few libraries, e.g., the Baidu SDK that recently had

a severe vulnerability [35], are provided as native library.
Such libraries could be detected based on the hashes of their
shared object files included in the app packages. Providing a
database for native libraries would complement our approach.
Lastly, our repository contains only the top apps on Google

Play. Thus, the results of our study might shift when we also
consider the “long tail” of apps. We deliberately decided for
this approach, since those top apps account for the bulk of all

downloads and the largest user-base on Play. Another tech-
nical reason is that building complete app version histories
is also a highly time-consuming task (in our experience, one
Google account can query one app version per 2–5 seconds).

9. CONCLUSION
There is a trend to include more and more libs into apps,

while at the same time app developers slowly adapt to new
library versions (if at all). This puts millions of users at risk
if security vulnerabilities remain unfixed in current top apps.
Similar to the Android fragmentation problem, our results
show strong indications for a library version fragmentation
problem. Even in top apps severly outdated library versions
were found, implying that library providers can not act on
the assumption that end-users may use the latest features or
have the latest bugfixes. We conclude that there is a need
for additional research on third-party libraries.
Ethical considerations. We inform the developers of vul-
nerable libs and report the affected apps on Google Play.

Acknowledgments
This work was supported by the German Federal Ministry
of Education and Research (BMBF) through funding for the
Center for IT-Security, Privacy and Accountability (CISPA)
(FKZ: 16KIS0345, 16KIS0656) and the project SmartPriv
(FKZ: 16KIS0377K).

10. REFERENCES
[1] T.J. Watson Libraries for Analysis (WALA).

http://wala.sf.net, 2006.
[2] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,

J. Klein, Y. le Traon, D. Octeau, and P. McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps. In
PLDI’14, 2014.

[3] M. Backes, S. Bugiel, E. Derr, S. Gerling, and
C. Hammer. R-Droid: Leveraging Android App
Analysis with Static Slice Optimization. In ASIACCS
’16. ACM, 2016.

[4] T. Book, A. Pridgen, and D. S. Wallach. Longitudinal
analysis of android ad library permissions. In MoST’13.
IEEE, 2013.

[5] K. Chen, P. Liu, and Y. Zhang. Achieving accuracy
and scalability simultaneously in detecting application
clones on android markets. In ICSE’14. ACM, 2014.

[6] J. Crussell, C. Gibler, and H. Chen. Attack of the
clones: Detecting cloned applications on android
markets. In ESORICS’12. Springer, 2012.

[7] J. Crussell, C. Gibler, and H. Chen. Andarwin:
Scalable detection of semantically similar android
applications. In ESORICS’13. Springer, 2013.

[8] Dropbox Blog. Security bug resolved in the dropbox
sdks for android. https://blogs.dropbox.com/
developers/2015/03/security-bug-resolved-in-the-
dropbox-sdks-for-android. Last visited: 04/27/16.

[9] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel.
An empirical study of cryptographic misuse in android
applications. In CCS’13. ACM, 2013.

[10] W. Enck, D. Octeau, P. McDaniel, and C. Swarat. A
study of android application security. In USENIX
Security’11. USENIX, 2011.

http://wala.sf.net
https://blogs.dropbox.com/developers/2015/03/security-bug-resolved-in-the-dropbox-sdks-for-android
https://blogs.dropbox.com/developers/2015/03/security-bug-resolved-in-the-dropbox-sdks-for-android
https://blogs.dropbox.com/developers/2015/03/security-bug-resolved-in-the-dropbox-sdks-for-android

[11] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner,
B. Freisleben, and M. Smith. Why eve and mallory love
android: an analysis of android ssl (in)security. In
CCS’12. ACM, 2012.

[12] C. Gibler, J. Crussell, J. Erickson, and H. Chen.
Androidleaks: automatically detecting potential privacy
leaks in android applications on a large scale. In
TRUST ’12. Springer, 2012.

[13] M. I. Gordon, D. Kim, J. Perkins, L. Gilham,
N. Nguyen, and M. Rinard. Information-flow analysis of
Android applications in DroidSafe. In NDSS’15, 2015.

[14] M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi.
Unsafe exposure analysis of mobile in-app
advertisements. In WISEC’12. ACM, 2012.

[15] GuardSquare. Dexguard android obfuscator.
https://www.guardsquare.com/dexguard.

[16] GuardSquare. Proguard java obfuscator.
http://proguard.sourceforge.net.

[17] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and
D. Song. Juxtapp: A scalable system for detecting code
reuse among android applications. In DIMVA’12.
Springer, 2013.

[18] Licel Corporation. Dexprotector android obfuscator.
https://dexprotector.com.

[19] Licel Corporation. Stringer java obfuscator.
https://jfxstore.com/stringer.

[20] B. Liu, B. Liu, H. Jin, and R. Govindan. Efficient
privilege de-escalation for ad libraries in mobile apps.
In MobiSys’15. ACM, 2015.

[21] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex:
Statically vetting android apps for component hijacking
vulnerabilities. In CCS’12. ACM, 2012.

[22] Z. Ma, H. Wang, Y. Guo, and X. Chen. Libradar: Fast
and accurate detection of third-party libraries in
android apps. In ICSE’16. ACM, 2016.

[23] R. C. Merkle. A digital signature based on a
conventional encryption function. In CRYPTO’87.
Springer, 1988.

[24] A. Narayanan, L. Chen, and C. K. Chan. Addetect:
Automated detection of android ad libraries using
semantic analysis. In ISSNIP’14. IEEE, 2014.

[25] M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and
S. Fahl. To pin or not to pin—helping app developers
bullet proof their tls connections. In USENIX
Security’15. USENIX, 2015.

[26] Parse Blog. Discovering a major security hole in
facebook’s android sdk.
http://blog.parse.com/learn/engineering/discovering-
a-major-security-hole-in-facebooks-android-sdk. Last
visited: 04/27/16.

[27] P. Pearce, A. Porter Felt, G. Nunez, and D. Wagner.
AdDroid: Privilege separation for applications and
advertisers in Android. In ASIACCS’12. ACM, 2012.

[28] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel,
and G. Vigna. Execute This! Analyzing Unsafe and
Malicious Dynamic Code Loading in Android
Applications. In NDSS’14, San Diego, CA, 2014.

[29] PreEmptive Solutions. Dasho java obfuscator.
http://www.preemptive.com/products/dasho.

[30] J. Seo, D. Kim, D. Cho, T. Kim, and I. Shin.

FlexDroid: Enforcing In-App Privilege Separation in
Android. In NDSS’16, 2016.

[31] S. Shekhar, M. Dietz, and D. S. Wallach. Adsplit:
Separating smartphone advertising from applications.
In USENIX Security’12. USENIX, 2012.

[32] Smardec Inc. Allatori java obfuscator.
http://www.allatori.com.

[33] S. Son, G. Daehyeok, K. Kaist, and V. Shmatikov.
What mobile ads know about mobile users. In
NDSS’16, 2015.

[34] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and
H. Chen. Investigating user privacy in android ad
libraries. In MoST’12. IEEE, 2012.

[35] The Hacker News. Backdoor in baidu android sdk puts
100 million devices at risk. http://thehackernews.com/
2015/11/android-malware-backdoor.html. Last visited:
04/27/16.

[36] The Hacker News. Facebook sdk vulnerability puts
millions of smartphone users’ accounts at risk.
http://thehackernews.com/2014/07/facebook-sdk-
vulnerability-puts.html. Last visited: 04/27/16.

[37] The Hacker News. Warning: 18,000 android apps
contains code that spy on your text messages.
http://thehackernews.com/2015/10/android-apps-
steal-sms.html. Last visited: 04/27/16.

[38] N. Viennot, E. Garcia, and J. Nieh. A measurement
study of google play. In SIGMETRICS’14. ACM, 2014.

[39] Vungle Support. Security vulnerability in android sdks
prior to 3.3.0. https://support.vungle.com/hc/en-us/
articles/205142650-Security-Vulnerability-in-Android-
SDKs-prior-to-3-3-0. Last visited: 05/02/2016.

[40] H. Wang, Y. Guo, Z. Ma, and X. Chen. Wukong: A
scalable and accurate two-phase approach to android
app clone detection. In ISSTA’15. ACM, 2015.

[41] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and
Y. Gurevich. Explicating sdks: Uncovering assumptions
underlying secure authentication and authorization. In
USENIX Security’13. USENIX, 2013.

[42] F. Wei, S. Roy, X. Ou, and Robby. Amandroid: A
Precise and General Inter-component Data Flow
Analysis Framework for Security Vetting of Android
Apps. In CCS’14. ACM, 2014.

[43] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman,
D. Wagner, and K. Beznosov. Android permissions
remystified: A field study on contextual integrity. In
USENIX Security’15. USENIX, 2015.

[44] W. Yang, J. Li, Y. Zhang, Y. Li, J. Shu, and D. Gu.
Apklancet: Tumor payload diagnosis and purification
for android applications. In ASIACCS’14. ACM, 2014.

[45] Z. Yang and M. Yang. Leakminer: Detect information
leakage on Android with static taint analysis. In
WCSE’12. IEEE, 2012.

[46] N. Zhong and F. Michahelles. Where should you focus:
Long tail or superstar?: An analysis of app adoption on
the android market. In SA’12. ACM, 2012.

[47] W. Zhou, Z. Wang, Y. Zhou, and X. Jiang. Divilar:
Diversifying intermediate language for anti-repackaging
on android platform. In CODASPY’14. ACM, 2014.

[48] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting
repackaged smartphone applications in third-party
android marketplaces. In CODASPY’12. ACM, 2012.

https://www.guardsquare.com/dexguard
http://proguard.sourceforge.net
https://dexprotector.com
https://jfxstore.com/stringer
http://blog.parse.com/learn/engineering/discovering-a-major-security-hole-in-facebooks-android-sdk
http://blog.parse.com/learn/engineering/discovering-a-major-security-hole-in-facebooks-android-sdk
http://www.preemptive.com/products/dasho
http://www.allatori.com
http://thehackernews.com/2015/11/android-malware-backdoor.html
http://thehackernews.com/2015/11/android-malware-backdoor.html
http://thehackernews.com/2014/07/facebook-sdk-vulnerability-puts.html
http://thehackernews.com/2014/07/facebook-sdk-vulnerability-puts.html
http://thehackernews.com/2015/10/android-apps-steal-sms.html
http://thehackernews.com/2015/10/android-apps-steal-sms.html
https://support.vungle.com/hc/en-us/articles/205142650-Security-Vulnerability-in-Android-SDKs-prior-to-3-3-0
https://support.vungle.com/hc/en-us/articles/205142650-Security-Vulnerability-in-Android-SDKs-prior-to-3-3-0
https://support.vungle.com/hc/en-us/articles/205142650-Security-Vulnerability-in-Android-SDKs-prior-to-3-3-0

	Introduction
	Related work
	Requirements Analysis
	Approach
	Package Tree
	Profile Extraction
	Profile Matching

	Library and App Repository
	Library Database
	Play Store Crawler and Repository

	Evaluation of Lib Detection
	Library Profile Uniqueness
	Library Prevalence

	Study of Third-Party Libraries
	Up-to-dateness of Libraries in Top Apps
	Detecting Vulnerable Library Versions
	Analysis of security-related APIs

	Discussion
	Conclusion
	References

