
Twin Clouds: Secure Cloud Computing with
Low Latency

(Full Version)?

Sven Bugiel, Stefan Nürnberger, Ahmad-Reza Sadeghi, Thomas Schneider

Center for Advanced Security Research Darmstadt,
Technische Universität Darmstadt, Germany

{sven.bugiel,stefan.nuernberger,ahmad.sadeghi,thomas.schneider}
@trust.cased.de

Abstract. Cloud computing promises a cost effective enabling technol-
ogy to outsource storage and massively parallel computations. However,
existing approaches for provably secure outsourcing of data and arbitrary
computations are either based on tamper-proof hardware or fully homo-
morphic encryption. The former approaches are not scaleable, while the
latter ones are currently not efficient enough to be used in practice.

We propose an architecture and protocols that accumulate slow secure
computations over time and provide the possibility to query them in
parallel on demand by leveraging the benefits of cloud computing. In our
approach, the user communicates with a resource-constrained Trusted
Cloud (either a private cloud or built from multiple secure hardware
modules) which encrypts algorithms and data to be stored and later
on queried in the powerful but untrusted Commodity Cloud. We split
our protocols such that the Trusted Cloud performs security-critical pre-
computations in the setup phase, while the Commodity Cloud computes
the time-critical query in parallel under encryption in the query phase.

Keywords: Secure Cloud Computing, Cryptographic Protocols, Verifiable Out-
sourcing, Secure Computation

1 Introduction

Many enterprises and other organizations need to store and compute on a large
amount of data. Cloud computing aims at renting such resources on demand.
Today’s cloud providers offer both, highly available storage (e.g., Amazon’s Elas-
tic Block Store [2]) and massively parallel computing resources (e.g., Amazon’s
Elastic Compute Cloud (EC2) with High Performance Computing (HPC) Clus-
ters [3]) at low costs, as they can share resources among multiple clients.

? A preliminary version of this paper was published as extended abstract in [7].

On the other hand, sharing resources poses the risk of information leakage. Cur-
rently, there is no guarantee that security objectives stated in Service Level
Agreements (SLA) are indeed fulfilled. Consequently, when using the cloud, the
client is forced to blindly trust the provider’s mechanisms and configuration [9].
However, this is accompanied by the risk of data leakage and industrial espionage
due to a malicious insider at the provider or due to other customers with whom
they share physical resources in the cloud [32]. Example applications that need
to protect sensitive data include, but are not limited to, processing of personal
health records or payroll databases. Access usually occurs not very frequently,
but needs to be processed very fast while privacy of the data should be preserved.

Due to regulatory reasons, contractual obligations, or protection of intellectual
property, cloud clients require confidentiality of their outsourced data, that com-
putations on their data were processed correctly (verifiability), and that no
tampering happened (integrity). Secure outsourcing of arbitrary computations
on data is particularly difficult to fulfill if the client does not trust the cloud
provider at all. Some cryptographic methods allow specific computations on en-
crypted data [4,18], or to securely and verifiably outsource storage [24].

Secure computation of arbitrary functions, e.g., arbitrary statistics or queries,
on confidential data can be achieved based on fully homomorphic encryption
as shown in [10,8]. However, these schemes are not yet usable in practice due
to their poor efficiency. Furthermore, in a multi-client scenario, cryptography
alone is not sufficient and additional assumptions have to be made such as using
tamper-proof hardware [42]. Still, secure hardware which provides a shielded
execution environment does not scale well as it is expensive and relatively slow.

Our Approach. We propose a model for secure computation of arbitrary func-
tions with low latency using two clouds (twins). The resource-constrained Trusted
Cloud is used for pre-computations whereas the untrusted, but powerful Com-
modity Cloud is used to achieve low latency (cf. Fig. 1). Our approach allows to
separate the computations into their security and performance aspects: security-
critical operations are performed by the Trusted Cloud in the Setup Phase,
whereas performance-critical operations are performed on encrypted data in par-
allel by the Commodity Cloud in the Query Phase. Analogous to electricity, this
can be seen as a battery that can be charged over night with limited amperage
and later provides energy rapidly during discharge.

In the Setup Phase, the Trusted Cloud encrypts the outsourced data and pro-
grams using Garbled Circuits (GC) [43] which requires only symmetric crypto-
graphic operations and a constant amount of memory. In the time-critical Query
Phase, the Trusted Cloud verifies the results computed by the Commodity Cloud
under encryption. Our proposed solution is transparent as the Client uses the
Trusted Cloud as a proxy that provides a clearly defined interface to manage the
outsourced data, programs, and queries. We minimize the communication over
the secure channel (e.g., SSL/TLS) between Client and Trusted Cloud.

Commodity CloudTrusted CloudClient

High Bandwidth

Channel
Untrusted
Storage

Secure

Channel

Fig. 1. Twin Clouds model with Client, Trusted Cloud, and Commodity Cloud.

Outline and Contribution. After summarizing related work in §2 and pre-
liminaries in §3 we present the following contributions in the respective sections:
In §4 we present our model for secure outsourcing of data and arbitrary compu-
tations with low latency using two clouds. The Trusted Cloud is mostly involved
in the Setup Phase, while queries are evaluated under encryption and in parallel
by the untrusted Commodity Cloud. In §5 we give an instantiation of our model
based on GCs, the currently most efficient method for secure computation.

Our proposed solution has several advantages over previous proposals (cf. §2):

1. Communication Efficiency. We minimize the communication between the
client and the Trusted Cloud as only a program, i.e., a very compact descrip-
tion of the function, is transferred and compiled on-the-fly into a circuit.

2. Transparency. The client communicates with the Trusted Cloud over a secure
channel and clear interfaces that abstract from the underlying cryptography.

3. Scalability and Low Latency. Our approach is highly scalable as both clouds
can be composed from multiple nodes. In the Query Phase, the Trusted
Cloud performs only few computations (independent of the function’s size).

4. Multiple Clients. Our protocols can be extended to multiple clients such
that the Commodity Cloud securely and non-interactively computes on the
clients’ input data.

2 Related Work

Here, we summarize related works for secure outsourcing of storage and arbitrary
computations based on Trusted Computing (§2.1), Secure Hardware (§2.2), Se-
cure Computation (§2.3), and Architectures for Secure Cloud Computing (§2.4).

2.1 Trusted Computing

The most prominent approach to Trusted Computing technology was specified
by the Trusted Computing Group (TCG) [40]. The TCG proposes to extend
common computing platforms with trusted components in software and hard-
ware, which enable the integrity measurement of the platform’s software stack

at boot-/load-time (authenticated boot, [35]) and the secure reporting of these
measurements to a remote party (remote attestation, [14]). Thus, it provides the
means to achieve verifiability and transparency of a trusted platform’s software
state. Trusted Computing enables the establishment of trusted execution envi-
ronments in commodity cloud infrastructures [37,36]. However, the reliable and
efficient attestation of execution environments at run-time remains an open re-
search problem. Trusted Computing is orthogonal to our approach and could be
used to augment the Trusted Cloud with attestation capabilities.

2.2 Secure Hardware / HSMs

Cryptographic co-processors, such as the IBM 4765 or 4764 [19], provide a high-
security, tamper-resistant execution environment for sensitive cryptographic op-
erations. Such co-processors are usually certified, e.g., according to FIPS or
Common Criteria. Hardware Security Modules (HSM) or Smartcards addition-
ally provide a secure execution environment to execute custom programs. As
secure hardware is usually expensive, relatively slow, and provides only a lim-
ited amount of secure memory and storage, it does not qualify as building block
for a cost-efficient, performant, and scalable cloud computing infrastructure.

2.3 Secure Computation

Secure computation allows mutually distrusting parties to securely perform com-
putations on their private data without involving a trusted third party. Existing
approaches for secure computation are either based on computing with encrypted
functions (called Garbled Circuits), or computing on encrypted data (using ho-
momorphic encryption) as summarized in the following.

Garbled Circuits. Yao’s Garbled Circuits (GC) [43] allow secure computation
with encrypted functions. On a high level, one party (called constructor) “en-
crypts” the function to be computed using symmetric cryptography and later,
the other party (called evaluator) decrypts the function using keys that corre-
spond to the input data (called “garbled values”). We give a detailed description
of GCs later in §3.2. Although GCs are very efficient as they use only symmetric
cryptographic primitives, their main disadvantage is that each GC can be evalu-
ated only once and its size is linear in the size of the evaluated function. As used
in several works (e.g., [28,1,13,23,17]), the trusted GC creator can generate GCs
in a setup phase and subsequently GCs are evaluated by one or more untrusted
parties. Afterwards, the GC creator can verify efficiently that the computations
indeed have been performed correctly (verifiability). Our protocols in §5 use GCs
in commodity clouds that are composed from off-the-shelf hardware. In particu-
lar our protocols do not require that the cloud is equipped with trusted hardware
modules (as proposed in [20,21,34,26]), while they could benefit from hardware
accelerators such as FPGAs or GPUs (cf. [23]).

Homomorphic Encryption. Homomorphic Encryption (HE) allows to com-
pute on encrypted data without using additional helper information. Tradi-
tional HE schemes are restricted to specific operations (e.g., multiplications
for RSA [33], additions for Paillier [29], or additions and up to one multipli-
cation for [6]). They allow to outsource specific computations, e.g., encryption
and signatures [18], to untrusted workers, but require interaction to compute
arbitrary functions. Recently, Fully HE (FHE) schemes have been proposed for
arbitrary computations on encrypted data [11,38,41]. When combined with GCs
for verifiability (cf. above), FHE allows to securely outsource data and arbitrary
computations [10,8]. However, FHE is not yet sufficiently efficient to be used in
practical applications [38,12].

Multiple Data Owners. The setting of secure outsourcing of data and computa-
tions can be generalized to multiple parties who provide their encrypted inputs
to an untrusted server that non-interactively computes the verifiably correct re-
sult under encryption. However, using cryptography alone, this is only possible
for specific functions [15], but not arbitrary ones [42]. This impossibility result
can be overcome by using a trusted third party, in our case the Trusted Cloud.

2.4 Architectures for Secure Cloud Computing

We combine advantages of the following architectures for secure cloud computing.

An architecture for Signal Processing in the Encrypted Domain (SPED) in com-
modity computing clouds is described in [39]. SPED is based on cryptographic
concepts such as secure multiparty computation or homomorphic encryption,
which enable the secure and verifiable outsourcing of the signal processing. The
authors propose a middleware architecture on top of a commodity cloud which
implements secure signal processing by using SPED technologies. The client
communicates via a special API, provided by a client-side plugin, with the mid-
dleware in order to submit new inputs and retrieve results. However, the authors
do not elaborate on how to instantiate their protocols efficiently and do not an-
swer problems regarding the feasibility of their approach. For instance, if GCs
are used, they need to be transferred between the client-side plugin and the
middleware which requires a large amount of communication. We parallelize the
client plugin within the Trusted Cloud, provide a clear API that abstracts from
cryptographic details, and give complete protocols.

Another architecture for secure cloud computing was proposed in [34]. The au-
thors propose to use a tamper-proof hardware token which generates GCs in a
setup phase that are afterwards evaluated in parallel by the cloud. The token
receives the description of a boolean circuit and generates the corresponding GC
using a constant amount of memory (using the protocol of [22]). The hardware
token is integrated into the infrastructure of the cloud service provider either in
form of a Smartcard provided by the client, or as a cryptographic co-processor.

We overcome several restrictions of this architecture by transferring smaller pro-
gram descriptions instead of boolean circuits, virtualizing the hardware token in
the Trusted Cloud, and providing a clear API for the client.

This idea of secure outsourcing of data and computations based on a tamper-
proof hardware token was extended to the multi-cloud scenario in [26]. In this
scenario, multiple non-colluding cloud providers are equipped with a tamper-
proof hardware token each. On a conceptual level, the protocol of [26] is similar
to that of [34]: The token outputs helper information, i.e., multiplication tu-
ples (resp. garbled tables in [34]), to the associated untrusted cloud provider
who uses this information within a secure multi-party computation protocol ex-
ecuted among the cloud providers (resp. for non-interactive computation under
encryption) based on additive secret-sharing (resp. garbled circuits). The tokens
in both protocols need to implement only symmetric cryptographic primitives
(e.g., AES or SHA) and require only a constant amount of memory. In contrast,
our Twin Clouds protocol is executed between two clouds (one trusted and one
untrusted) and does not require trusted hardware.

3 Preliminaries

Our constructions make use of the following building blocks.

3.1 Encryption and Authentication

Confidentiality and authenticity of data can be guaranteed with symmetric cryp-
tography: either with a combination of symmetric encryption (e.g., AES) and a
Message Authentication Code (MAC, e.g., HMAC), or by using authenticated
encryption, a special mode of operation of a block cipher (e.g., EAX [5]).

Notation. x̂ = AuthEnc(x) denotes the authentication and encryption of data x;
x = DecVer(x̂) denotes the corresponding verification and decryption process.

3.2 Garbled Circuits (GC)

Arbitrary functions can be computed securely based on Yao’s Garbled Circuits
(GC) [43]. Compared to FHE (cf. §2.3), GCs are highly efficient as they use only
symmetric cryptographic primitives but require helper information (cf. Fig. 2).

The main idea of GCs is that the constructor generates an encrypted version
of the function f (represented as boolean circuit), called garbled circuit f̃ . For
this, it assigns to each wire Wi of f two randomly chosen garbled values w̃0

i , w̃1
i

that correspond to the respective values 0 and 1. Note that w̃j
i does not reveal

any information about its plain value j as both keys look random. Then, for
each gate of f, the constructor creates helper information in form of a garbled

constructor

y = f(x) Verify

function f

gate Gi

W1W2

W3

∧

garbled circuit �f

garbled table �Ti

�w1 �w2

�w3

∧

evaluator
�f

�y = �f(�x)

EvaluateGC
�x

data x

CreateGC

Garble

Fig. 2. Overview of Garbled Circuits

table T̃i that allows to decrypt only the output key from the gate’s input keys
(details below). The garbled circuit f̃ consists of the garbled tables of all gates.
Later, the evaluator obtains the garbled values x̃ corresponding to the inputs
x of the function and evaluates the garbled circuit f̃ by evaluating the garbled
gates one-by-one using their garbled tables. Finally, the evaluator obtains the
corresponding garbled output values ỹ which allow the constructor to decrypt
them into the corresponding plain output y = f(x).

Security and Verifiability. GCs are secure against malicious evaluator (cf. [13])
and demonstration of valid output keys implicitly proves that the computation
was performed correctly (cf. [10]). To guarantee security and verifiability, a GC
can be evaluated only once, i.e., a new GC must be created for each evaluation.

Efficient GC constructions. The efficient GC construction of [25], provably se-
cure in the random oracle model, provides “free XOR” gates, i.e., XOR gates
have no garbled table and negligible cost for evaluation. For each 2-input non-
XOR gate the garbled table has size ≈ 4t bits, where t is the symmetric security
parameter (e.g., t = 128); creation of the garbled table requires 4 invocations
of a cryptographic hash function (e.g., SHA-256) and evaluation needs 1 invo-
cation. As shown in [22], generation of GCs requires only a constant amount of
memory (independent of the size of the evaluated function) and only symmet-
ric cryptographic operations (e.g., SHA-256). The implementation results of [31]
show that evaluation of GCs can be performed efficiently on today’s hardware:
GC evaluation of the reasonably large AES functionality (22,546 XOR; 11,334
non-XOR gates) took 2s on a single core of an Intel Core 2 Duo with 3.0 GHz.

Notation. x̃ is the garbled value corresponding to x. C̃ is the GC for boolean
circuit C (with |C| non-XOR gates). ỹ = C̃(x̃) denotes evaluation of C̃ on x̃.

3.3 Circuit Compiler

The functions to be computed securely can be expressed in a compact way in a
hardware description language and compiled automatically into a boolean cir-
cuit. A prominent example is Fairplay’s [27] Secure Function Description Lan-
guage (SFDL) which resembles a simplified version of a hardware description
language, e.g., Verilog or VHDL (Very high speed integrated circuit Hardware
Description Language), and supports types, variables, functions, boolean oper-
ators (∧,∨,⊕, . . .), arithmetic operators (+,−), comparison (<,≥,=, . . .), and
control structures like if-then-else or for-loops with constant range. Other can-
didates for compact description and compilation into boolean circuits are the
languages and tools provided by [30,16]. As shown in [16], the compilation into a
circuit can be implemented with a low memory footprint. In principle, it would
be possible to compile algorithms formulated in any standard programming lan-
guage such as C or Java into a boolean circuit, as every computable function
can be expressed as boolean circuit of polynomial size.

Notation. C = Compile(P) denotes compilation of program P into circuit C.

4 Twin Clouds Model

Our Twin Clouds model, depicted in Fig. 1 on page 3, allows secure outsourcing
of data and arbitrary computations with low latency to an untrusted commodity
cloud. In our model, the Client makes use of the services offered by a cloud service
provider to outsource its data and computations thereon into the provider’s
Commodity Cloud in a secure way. The confidentiality and the integrity of the
outsourced data must be protected against a potentially malicious provider, and
the correctness of the outsourced computations must be verifiable by the Client.

Due to the assumed large size of the Client’s data and/or the computational
complexity of the computations thereon, it is not possible to securely outsource
the data to the Commodity Cloud and let the Client execute its computations
locally after retrieving back the entire data. Instead, the computations must be
performed by the Commodity Cloud without interaction with the Client.

To achieve these goals and satisfy the above mentioned security requirements,
the Twin Cloud model uses a Trusted Cloud as proxy between the Client and the
Commodity Cloud. The Trusted Cloud provides a resource-restricted execution
environment and infrastructure that is fully trusted by the Client. As the re-
sources of the Trusted Cloud are restricted, relatively expensive, and potentially
slow, the computations can also not be performed within the Trusted Cloud.

Instead, the Trusted Cloud is a transparent proxy that adds the needed se-
curity properties (integrity, confidentiality, verifiability) on top of the services
provided by the fast but insecure Commodity Cloud. It provides an interface for

secure storage and computations to the Client while abstracting from the ser-
vice provider’s cloud infrastructure. This interface (e.g., a web-frontend or API)
allows to securely submit data, programs, and queries to be securely stored and
computed. The low-bandwidth connection between Client and Trusted Cloud is
secured by a secure channel (e.g., SSL/TLS).

The Trusted Cloud is used mostly during a Setup Phase, but performs only few
computations during the time-critical Query Phase. It is assumed to have a small
amount of storage only; if larger amounts of data need to be stored, they can be
securely outsourced to the Commodity Cloud’s untrusted storage. To allow this
secure outsourcing of storage, the Trusted Cloud is connected to the Commodity
Cloud over an unprotected high-bandwidth channel.

A possible instantiation of the Trusted Cloud can be a private cloud of the Client
(e.g., his existing IT infrastructure). Alternatively, the Trusted Cloud could be
a cluster of virtualized cryptographic co-processors (e.g., the IBM 4765 [19] or
other Hardware Security Modules) which are offered as a service by a third party
and which provide the necessary hardware-based security features to implement
a secure remote execution environment trusted by the Client.

5 Twin Clouds Protocols

To efficiently instantiate the Twin Clouds model of §4 we use a “battery”
for secure computations: In the Setup Phase, the battery is charged by pre-
computing encrypted (garbled) data and functions within the resource-limited
Trusted Cloud. Later, in the Query Phase, the battery is rapidly discharged by
evaluating these encryptions in parallel within the Commodity Cloud.

Simplification. To ease presentation, we assume a single client who outsources
a single program P . However, our protocols naturally extend to multiple pro-
grams and clients. We also assume that the Trusted Cloud takes appropriate
measures to protect against replay attacks, e.g., an internal database of ran-
domly chosen keys for each authenticated encryption and GC with associated
garbled data.

Interface. The Client accesses the Trusted Cloud over a secure channel and
the following interface which abstracts from all underlying cryptographic details:
During the Setup Phase, the Client provides the data D to be outsourced and
the program P (formulated in a Hardware Description Language, cf. §3.3) to be
computed. Later, in the Query Phase, the Client issues a query q which should
be processed as fast as possible resulting in the response r = P (q,D) output to
the Client. Additionally, the Client can update the stored data D or program P .

Protocol Overview. On a high-level, our protocols work as follows: The
Trusted Cloud stores Client’s data D and program P securely in the Com-
modity Cloud. Then, the Trusted Cloud retrieves back D and re-encrypts it
into its garbled equivalent D̃, and generates GCs C̃ from P ; both are stored
in the Commodity Cloud. Later, the Client’s query q is encrypted and sent to
the Commodity Cloud which computes the garbled result r̃ = C̃(q̃, D̃) under

encryption (using a pre-computed C̃ which is deleted afterwards). Finally, the
Trusted Cloud verifies the garbled result and sends r = P (q,D) to the Client.

We describe the details of the two phases next. Actions invoked by the Client
are denoted by Latin letters and automatically triggered actions by Greek ones.

5.1 Setup Phase

The Setup Phase, depicted in Fig. 3, consists of the following use-cases.

D , P ,
D , C

Trusted CloudClient Commodity Cloud

D=AuthEnc Da1 D a2 D

b1 P P=AuthEnc P b2 P

D=DecVer D
D=GarbleD 2 D

1 D

P=DecVer P
C=Compile P
C=CreateGC C

2 C
1 P

Fig. 3. Setup Phase: a,b) Client registers data D and program P to be stored securely

in the Commodity Cloud. α) Updates of D require re-generation of garbled data D̃.

β) Updates of P require re-generation of garbled circuits C̃.

a) Modify Data. When the Client provides new or modified data D to be out-

sourced (a1), D is stored securely as D̂ = AuthEnc(D) (cf. §3.1) in the Com-

modity Cloud (a2). Whenever D is modified, the garbled data D̃ is re-generated

(cf. α below) and all pre-computed GCs C̃ can be deleted.

b) Modify Program. Whenever the Client provides a new or modified program P

(b1), P is stored securely as P̂ = AuthEnc(P) (cf. §3.1) in the Commodity Cloud

(a2). Whenever P is modified, all pre-computed GCs C̃ can be deleted.

α) Garble Data. Whenever D is changed, the garbled data D̃ must be re-

generated. For this, the Trusted Cloud requests the securely stored data D̂ from
the Commodity Cloud (α1), recovers the data D = DecVer(D̂) (cf. §3.1), gen-

erates the corresponding garbled data D̃ = Garble(D) (cf. §3.2), and stores this
back into the Commodity Cloud (α2).

β) Garble Program. Whenever D or P is changed or the Trusted Cloud has
capacities for pre-computations, new GCs are generated. For this, the Trusted
Cloud requests the securely stored program P̂ from the Commodity Cloud (β1),

recovers the program P = DecVer(P̂) (cf. §3.1), compiles it into a boolean circuit

C = Compile(P) (cf. §3.3), generates a new GC C̃ = Garble(C) (cf. §3.2), and
stores this back into the Commodity Cloud (β2).

5.2 Query Phase

The query phase depicted in Fig. 4 consists of the following use-case:

r=Verify r

c2 q

c3 r

q=Garble q

r=C q , D

c1 q

c4 r=Pq , D

Client Trusted Cloud Commodity Cloud

D , P ,
D , CX

Fig. 4. Query Phase: Client sends query q to the Trusted Cloud to be computed by
the Commodity Cloud under encryption (c). The used GC C̃ is deleted afterwards.

c) Process Query. When the Client sends a query q for secure evaluation (c1),
the Trusted Cloud converts q into its garbled equivalent q̃ = Garble(q) (cf.
§3.2) which is forwarded to the Commodity Cloud (c2). The Commodity Cloud

computes the garbled response r̃ = C̃(q̃, D̃) by evaluating a pre-computed GC C̃
(cf. §3.2) in parallel and deleting it afterwards. The garbled result r̃ is returned to
the Trusted Cloud (c3) which verifies the correctness of the result r = Verify(r̃)
(cf. §3.2) and returns r = P (q,D) to the Client.

5.3 Analysis

In the following we analyze the security and efficiency properties of our protocols.

Security Analysis. The security of our protocols stems from the fact that the
Trusted Cloud is a secure execution environment, whereas the adversary can
have full control over the Commodity Cloud and all communication channels.
More specifically, our protocols are secure against a malicious Commodity Cloud
provider as well as external adversaries: The Commodity Cloud is neither able to
successfully modify nor to learn the outsourced data D̂ or program P̂ as these are
authenticated and encrypted (cf. §3.1). The security and verifiability properties
of GCs (cf. §3.2) ensure that the Commodity Cloud also cannot successfully

modify or learn q̃, D̃, C̃, r̃, or intermediate results of the computation. Clearly,
the Commodity Cloud learns an upper bound on the size of all data which can be
circumvented by appropriate padding. The same holds true for external attackers
that also cannot interfere with the communication between Client and Trusted
Cloud due to the usage of a secure channel (e.g., SSL/TLS).

Efficiency Analysis. The communication between Client and Trusted Cloud
is minimized as only data and a compact program are transferred over the se-
cure channel, while the communication between Trusted Cloud and Commodity
Cloud is dominated by the transfer of C̃ of size ≈ 4t · |C| bits, where t is the
symmetric security parameter, e.g., t = 128 (cf. §3.2). The Commodity Cloud’s

storage is dominated by t · (|D| + 4|C|) bits for D̃ and C̃, while the Trusted
Cloud needs only low memory/storage. The dominating factor of the compu-
tation complexity are 4|C| hash function evaluations by the Trusted Cloud in
the Setup Phase and |C| parallel hash function evaluations by the Commodity
Cloud in the Query Phase. Note that many functionalities such as queries on or
statistics over large databases naturally allow parallelization.

Finally, we’d like to emphasize that our protocols can be used to securely out-
source data and arbitrary computations thereon, use only symmetric-key cryp-
tographic primitives, and do not rely on tamper-proof hardware. A prototype
implementation to verify their practical efficiency is left as future work.

Acknowledgements

We thank Radu Sion for pointing out the analogy of our Twin Clouds model
with a rechargeable battery that accumulates energy (computations) over some
time and can then be uncharged rapidly. This work was in part funded in part
by the European Commission through the ICT program under contract 257243
TClouds and 216676 ECRYPT II.

References

1. J. Algesheimer, C. Cachin, J. Camenisch, and G. Karjoth. Cryptographic security
for mobile code. In Security and Privacy, pages 2–11. IEEE, 2001.

2. Amazon. Elastic Block Store (EBS). http://aws.amazon.com/ebs, 2011.
3. Amazon. Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2, 2011.
4. M. Atallah, K. Pantazopoulos, J. Rice, and E. Spafford. Secure outsourcing of

scientific computations. Advances in Computers, 54:216–272, 2001.
5. M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation: A two-

pass authenticated-encryption scheme optimized for simplicity and efficiency. In
FSE’04, volume 3017 of LNCS, pages 389–407. Springer, 2004.

6. D. Boneh, E. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In
TCC’05, volume 3378 of LNCS, pages 325–341. Springer, 2005.

7. Sven Bugiel, Stefan Nürnberger, Ahmad-Reza Sadeghi, and Thomas Schneider.
Twin Clouds: An architecture for secure cloud computing (Extended Abstract).
Workshop on Cryptography and Security in Clouds (WCSC’11), March 15-16,
2011.

8. K. Chung, Y. Kalai, and S. Vadhan. Improved delegation of computation using
fully homomorphic encryption. In CRYPTO’10, volume 6223 of LNCS, pages 483–
501. Springer, 2010.

9. Cloud Security Alliance. Top threats to cloud computing, v. 1.0, 2010.
10. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: out-

sourcing computation to untrusted workers. In CRYPTO’10, volume 6223 of LNCS,
pages 465–482. Springer, 2010.

11. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC’09, pages
169–178. ACM, 2009.

12. Craig Gentry and Shai Halevi. Implementing Gentry’s fully-homomorphic encryp-
tion scheme. In EUROCRYPT’11, 2011. To appear.

13. S. Goldwasser, Y. Kalai, and G. Rothblum. One-time programs. In CRYPTO’08,
volume 5157 of LNCS, pages 39–56. Springer, 2008.

14. Trusted Computing Group. Trusted platform module (TPM) main specification,
2007.

15. Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the
web: Computing without simultaneous interaction. Cryptology ePrint Archive,
2011/157, 2011.

16. W. Henecka, S. Kögl, A. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY: Tool
for Automating Secure Two-partY computations. In CCS, pages 451–462. ACM,
2010.

17. A. Herzberg and H. Shulman. Secure guaranteed computation. Cryptology ePrint
Archive, Report 2010/449, 2010.

18. S. Hohenberger and A. Lysyanskaya. How to securely outsource cryptographic
computations. In TCC’05, volume 3378 of LNCS, pages 264–282. Springer, 2005.

19. IBM. Cryptocards. http://www-03.ibm.com/security/cryptocards/, 2011.
20. A. Iliev. Hardware-Assisted Secure Computation. PhD thesis, Dartmouth College,

Hanover, NH, USA, 2009.
21. A. Iliev and S. Smith. Small, stupid, and scalable: secure computing with

Faerieplay. In Workshop on Scalable Trusted Computing (STC’10), pages 41–52.
ACM, 2010.

22. K. Järvinen, V. Kolesnikov, A. Sadeghi, and T. Schneider. Embedded SFE: Of-
floading server and network using hardware tokens. In FC’10, volume 6052 of
LNCS, pages 207–221. Springer, 2010.

http://aws.amazon.com/ebs
http://aws.amazon.com/ec2
http://www-03.ibm.com/security/cryptocards/

23. K. Järvinen, V. Kolesnikov, A. Sadeghi, and T. Schneider. Garbled circuits for
leakage-resilience: Hardware implementation and evaluation of one-time programs.
In CHES’10, volume 6225 of LNCS, pages 383–397. Springer, 2010.

24. S. Kamara and K. Lauter. Cryptographic cloud storage. In Real-Life Cryptographic
Protocols and Standardization, volume 6054 of LNCS, pages 136–149. Springer,
2010.

25. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and
applications. In ICALP’08, volume 5126 of LNCS, pages 486–498. Springer, 2008.

26. J. Loftus and N. Smart. Secure outsourced computation. In AFRICACRYPT’11,
2011. To appear.

27. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay – a secure two-party com-
putation system. In Security, pages 287–302. USENIX, 2004.

28. M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism
design. In Electronic Commerce (EC’99), pages 129–139. ACM, 1999.

29. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In EUROCRYPT’99, volume 1592 of LNCS, pages 223–238. Springer, 1999.

30. A. Paus, A. Sadeghi, and T. Schneider. Practical secure evaluation of semi-private
functions. In ACNS’09, volume 5536 of LNCS, pages 89–106. Springer, 2009.

31. B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure two-party computation
is practical. In ASIACRYPT’09, volume 5912 of LNCS, pages 250–267. Springer,
2009.

32. T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of my
cloud: exploring information leakage in third-party compute clouds. In CCS’09,
pages 199–212. ACM, 2009.

33. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Comm. ACM, 21:120–126, 1978.

34. A. Sadeghi, T. Schneider, and M. Winandy. Token-based cloud computing: Secure
outsourcing of data and arbitrary computations with lower latency. In TRUST’10
Workshop on Trust in the Cloud, volume 6101 of LNCS, pages 417–429. Springer,
2010.

35. R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn. Design and implementation of
a TCG-based integrity measurement architecture. In Security. USENIX, 2004.

36. N. Santos, K. Gummadi, and R. Rodrigues. Towards trusted cloud computing. In
Hot Topics in Cloud Computing (HotCloud’09). USENIX, 2009.

37. J. Schiffman, T. Moyer, H. Vijayakumar, T. Jaeger, and P. McDaniel. Seeding
clouds with trust anchors. In CCSW’10, pages 43–46. ACM, 2010.

38. N. Smart and F. Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In PKC’10, volume 6056 of LNCS, pages 420–
443. Springer, 2010.

39. J. R. Troncoso-Pastoriza and F. Pérez-González. CryptoDSPs for cloud privacy.
In Workshop on Cloud Information System Engineering (CISE’10), 2010.

40. Trusted Computing Group. http://www.trustedcomputinggroup.org, 2011.
41. M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic

encryption over the integers. In EUROCRYPT’10, volume 6110 of LNCS, pages
24–43. Springer, 2010.

42. M. Van Dijk and A. Juels. On the impossibility of cryptography alone for privacy-
preserving cloud computing. In HotSec’10, pages 1–8. USENIX, 2010.

43. A. C.-C. Yao. How to generate and exchange secrets. In FOCS’86, pages 162–167.
IEEE, 1986.

http://www.trustedcomputinggroup.org

	Twin Clouds: Secure Cloud Computing with Low Latency

